Halperin7e_CH29

665

C H A P T E R 2 9  Radioimmunotherapy and Unsealed Radionuclide Therapy

10. Wong JYC, Williams LE, Yazaki PJ. Radioimmunotherapy of colorectal cancer. In: Speer TW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:321–351. 11. O’Donoghue JA. Dosimetric principles of targeted radiotherapy. In:Abrams PG, Fritzberg AR, eds. Radioimmunotherapy of Cancer . New York: Marcel Dekker, 2000:1–20. 12. Burvenich IJG, Scott AM. The delivery construct: maximizing the therapeutic ratio of targeted radionuclide therapy. In: Speer TW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:236–248. 13. DiCara D, Nissim A. Methods for development of monoclonal antibody ther- apeutics. In: Speer TW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:22–31. 14. Jain M, Kaur S, Batra SK. Modulation of biologic impediments for radioimmu- notherapy of solid tumors. In: Speer TW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:182–190. 15. Wang Z, Dabrosin C, Yin X, et al. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 2015;35:S224–243. 16. Chauhan VP, Stylianopoulos T, Bouch Y, et al. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu Rev Chem Biomol Eng 2011;2:281–298. 17. Padera TP, Kadambi A, di Tomaso E, et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 2002;296:1883–1886. 18. Zwanziger D, Beck-Sickinger AG. Malignancies treated with peptides. In: Speer TW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:483–497. 19. Dash A, Chakraborty S, Raghavan MP, et al. Peptide receptor radionuclide ther- apy: an overview. Cancer Biother Radiopharm 2015;30:47–71. 20. Cives M, Strosberg J. Radionuclide therapy for neuroendocrine tumors. Curr Oncol Rep 2017;19:1–9. 21. Stahl S, Friedman M, Carlsson J, et al.Affibody molecules for targeted radionu- clide therapy. In: Speer TW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:49–58. 22. Frejd FY, Kim K.Affibody molecules as engineered protein drugs. Exp Mol Med 2017;49:1–8. 23. Missailidis S, Perkins A. Radiolabeled aptamers for imaging and therapy. In: Speer TW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:59–70. 24. Gijs M, Aerts A, Impens N, et al. Aptamers as radiopharmaceuticals for nuclear imaging and therapy. Nucl Med Biol 2016;43:253–271. 25. Enrique MA, Mariana OR, Mirshojaei SF, et al. Multifunctional radiolabeled nanoparticles: strategies and novel classification of radiopharmaceuticals for cancer treatment. J Drug Target 2015;23:191–201. 26. Pant K, Sedlacek O, Nadar RA, et al. Radiolabelled polymeric materi- als for imaging and treatment of cancer: Quo Vadis? Adv Healthc Mater 2017;6:1–31. 27. Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macro- molecules drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 2001;74:47–61. 28. Tesauro D, Morelli G, Pedone C, et al. Radiolabeled peptides, structure and analysis. In: Speer TW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:32–48. 29. Zhang L. Unnatural nucleic acids for aptamer selection. In: Tan W, Fang X, eds. Aptamers Selected by Cell-SELEX for Theranostics . Heidelberg: Springer, 2015:35–65. 30. Murry D, McEwan AJ. Radiobiology of systemic radiation therapy. Cancer Biother Radiopharm 2007;22:1–23. 31. Speer TW, Khuntia D. Introduction to radiation therapy. In: Mehta MP, ed. Principles and Practice of Neuro-oncology: A Multidisciplinary Approach . New York: Demos Medical Publishing, 2011:719–743. 32. Lundqvist H, Stenerlow B, Gedda L. The Auger effect in molecular targeting therapy. In: Stigbrand T, Carlsson J, Adams GP, eds. Targeted Radionuclide Tumor Therapy . Heidelberg: Springer, 2008:195–214. 33. Bernhardt P, Speer TW. Modeling the systemic cure with targeted radionu- clide therapy. In: Speer TW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:263–280. 34. Wilson AD, Brechbiel MW. Chelation chemistry. In: Speer TW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:88–107. 35. Patra M, Zarschler K, Pietzsch HJ, et al. New insights into the pretargeting approach to image and treat tumours. Chem Soc Rev 2016;45:6415–6431. 36. Sharkey RM, Goldenberg DM. Pretargeted radioimmunotherapy. In: Speer TW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:191–208. 37. Frampas E, Rousseau C, Bodet-Milin C, et al. Improvement of radioimmuno- therapy using pretargeting. Front Oncol 2013;3:1–8. 38. Green DJ, Frayo SL, Lin Y, et al. Comparative analysis of bispecific antibody and streptavidin-targeted radioimmunotherapy for B-cell cancers. Cancer Res 2016;76:6669–6679. 39. Song H, Sgouros G. Radioimmunotherapy of solid tumors: searching for the right target. Curr Drug Deliv 2011;8:26–44. 40. Jain M, Gupta S, Kaur S, et al. Emerging trends in radioimmunotherapy in solid tumors. Cancer Biother Radiopharm 2013;28:639–650. 41. Andrade-Campos MM, Lievano P, Espinosa-Lara N, et al. Long-term complica- tion in follicular lymphoma: assessing the risk of secondary neoplasm in 242 patients treated or not with 90-yttrium-ibritumomab-tiuxetan. Eur J Haematol 2016;97:576–582. 42. Burdick M, Macklis RM. Radioimmunotherapy for non-Hodgkin lymphoma: a clinical update. In: Speer TW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:426–440.

43. Sharkey RM, Karacay H, Goldenberg DM. Improving the treatment of non-Hodgkin lymphoma with antibody-targeted radionuclides. Cancer 2010;116:1134–1145. 44. Pandit-Taskar N, O’Donoghue JA, Morris MJ, et al. Antibody mass escalation study in patients with castration-resistant prostate cancer using 111In-J591: lesion delectability and dosimetric projections for 90Y radioimmunotherapy. J Nucl Med 2008;49:1066–1074. 45. Mondello P, Cuzzocrea S, Navarra M, et al. 90Y-ibritumomab tiuxetan: a nearly forgotten opportunity. Oncotarget 2015;7:7597–7609. 46. Rizzieri D. Zevalin (ibritumomab tiuxetan): after more than a decade of treatment experience, what have we learned? Crit Rev Oncol Hematol 2016;105:5–17. 47. WitzigTE,Gordon LI,Cabanillas F,et al.Randomized,controlled trial of yttrium- 90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol 2002;20:2453–2463. 48. Morschhauser F, Radford J, Van Hoof A, et al. Phase III trial of consolidation therapy with yttrium-90-ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J Clin Oncol 2008;26:5156–5164. 49. Morschhauser F, Radford J, Van Hoof A, et al. 90Yttrium-ibritumomab tiux- etan consolidation of first remission in advanced-stage follicular non-Hodg- kin lymphoma: updated results after a median follow-up of 7.3 years from the international, randomized, phase III first-line indolent trial. J Clin Oncol 2013;31:1977–1983. 50. Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of 177Lu-dototate for midgut neuroendocrine tumors. N Engl J Med 2017;376:125–135. 51. Al-Ejeh F, Brown MP. Combined modality therapy: relevance for targeted radio- nuclide therapy. In: SpeerTW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:220–235. 52. Wang H, Cao C, Li B, et al. Immunogenicity of iodine 131 chimeric tumor necro- sis therapy monoclonal antibody in advanced lung cancer patients. Cancer Immunol Immunother 2008;57:677–684. 53. Chen S,Yu L, Jiang C, et al. Pivotal study of iodine-131-labeled chimeric tumor necrosis treatment radioimmunotherapy in patients with advanced lung can- cer. J Clin Oncol 2005;23:1538–1547. 54. Zhao Z, Su Z, Zhang W, et al. A randomized study comparing the effective- ness of microwave ablation radioimmunotherapy and postoperative adju- vant chemoradiation in the treatment of non-small cell lung cancer. J BUON 2016;2:326–332. 55. Order S. Radioimmunotherapy of unresectable hepatocellular carcinoma. In: Speer TW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:352–355. 56. Chen Z-N, Mi L, Xu J, et al. Targeting radioimmunotherapy of hepatocellular carcinoma with iodine (131I) metuximab injection: clinical phase I/II trials. Int J Radiat Oncol Bio Phys 2006;65:435–444. 57. Xu J, Shen Z-Y, Chen X-G, et al. A randomized controlled trial of Licartin for preventing hepatoma recurrence after liver transplantation. Hepatology 2007;45:269–276. 58. Bian H, Zheng JS, Nan G, et al. Randomized trial of [131I] metuximab in treat- ment of hepatocellular carcinoma after percutaneous radiofrequency ablation. J Natl Cancer Inst 2014;106:1–5. 59. Speer TW, Limmer JP, Henrich D, et al. Evolution of radiotherapy toward a more targeted approach for CNS malignancies. In: Speer TW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:356–376. 60. Wygoda Z, Kula D, Bierzynska-Macyszyn G, et al. Use of monoclonal anti-EGFR antibody in the radioimmunotherapy of malignant gliomas in the context of EGFR expression in grade III and IV tumors. Hybridoma 2006;26(3):125–132. 61. Thurber GM. Kinetics of antibody penetration into tumors. In: Speer TW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:168–181. 62. Hopkins K, Chandler C, Eatough J, et al. Direct injection of 90Y MoAbs into glioma tumor resection cavities leads to limited diffusion of the radioimmu- noconjugates into normal brain parenchyma: a model to estimate absorbed radiation dose. Int J Radiation Oncol Biol Phys 1998;40:835–844. 63. Mamelak AN, Rosenfeld S, Bucholz R, et al. Phase I single-dose study of intra- cavitary-administered iodine-131-TM-601 in adults with recurrent high-grade glioma. J Clin Oncol 2006;24:3644–3650. 64. Akabani G, Reardon DA, Coleman RE, et al. Dosimetry and radiographic analysis of 131I-labeled anti-tenascin 81C6 murine monoclonal antibody in newly diagnosed patients with malignant gliomas: a phase II study. J Nucl Med 2005;46:1042–1051. 65. Reardon DA,Akabani G, Coleman RE, et al. Phase II trial of murine 131I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol 2002;20:1389–1397. 66. Reardon DA, Akabani G, Coleman RE, et al. Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: phase II study results. J Clin Oncol 2006;24:115–122. 67. Reardon DA, Zalutsky MR, Akabani G, et al. A pilot study: 131I-antitenascin monoclonal antibody 81C6 to deliver a 44-Gy resection cavity boost. Neuro Oncol 2008;10(2):182–189. 68. Zalutsky MR, Reardon DA, Akabani G, et al. Clinical experience with α -particle-emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med 2008;49(1):30–38. 69. McLendon RE, Akabani G, Friedman HS, et al. Tumor resection cavity admin- istered iodine-131-labeled antitenascin 81C6 radioimmunotherapy in patients with malignant glioma: neuropathology aspects. Nucl Med Biol 2007;34:405–413.

Section II

Made with FlippingBook - professional solution for displaying marketing and sales documents online