Microbiology-PTM-OMA_Modules_1-5

Module M1: PTM and OMA  Inclusivity and Exclusivity Studies

PTM and OMA SLV Study Designs

Method Type Study Design

Statistics

Acceptance Criteria Expert Judgement

50 target strains (100 if  Salmonella spp) 100x LOD; all claimed enrichments

None ‐ specifically report  negative inclusivity and  positive exclusivity strains None ‐ specifically report  negative inclusivity and  positive exclusivity strains

Qualitative

30 non‐target species  stationary growth in non‐selective media Quantitative 50 target strains (100 if  Salmonella spp) 100x LOD in non‐selective media

Expert Judgement

30 non‐target species  stationary growth in non‐selective media Identification* 25‐200 target strains depending on target None ‐ specifically report  100 non‐target strains *Preference is to follow ISO 16140‐6 for number and types of strains, dependent on the analyte claim. negative inclusivity and  positive exclusivity strains

Expert Judgement

OMA Collaborative Study Design

Method Type

# Valid Data Sets

Study Design

Statistics

ID Method

≥10

≥12 Organisms All claimed agars (Include non‐specific agar  if not claimed)

# Correct Identifications Specify strains with  incorrect identifications

1

Panel Requirements The types of strains required depends on the analyte claim. Example 1:  Salmonella spp. claim for screening method = 100 serovars for inclusivity; 30 species for  exclusivity

Inclusivity: ≥2 serovars S. bongori

≥3 serovars S. enterica  subsp arizonae ≥3 serovars S. enterica  subsp diarizonae ≥3 serovars S. enterica  subsp houtenae

≥3 serovars S. enterica  subsp indica ≥3 serovars S. enterica  subsp salamae Remainder is 1 strain per serovar of  S. enterica  subsp enterica

Exclusivity: 1 strain per species non‐ Salmonella

Slide 4 1

Could a slide or language be added for new or new to AOAC analytes or those that are not as common as Salmonella and E. coli O157? Zerlinde Balverde, 1/25/2019

Panel Requirements Example 2: E. coli O157:H7 screening method = 50 inclusivity strains; 30  exclusivity strains

Inclusivity: 50 strains of E. coli O157:H7 including at least 10 strains of E. coli  O157:NM (if claimed)

Exclusivity:Other serotypes of pathogenic E. coli  (regulated and non‐regulated) Non‐pathogenic E. coli  (1 strain) Other Escherichia species (1 strain per species)

Other coliforms (1 strain per species) Non‐coliforms (1 strain per species)

Panel Requirements Example 3:  Legionella  sp. screening method = 25‐30 inclusivity strains;  30 exclusivity strains

Inclusivity: 25‐30 strains of claimed  Legionella  sp. including at least 10 strains of  L. pneumophila

Exclusivity:Non‐claimed  Legionella  sp. (1 strain per species)

Waterborne Gram‐negative strains (1 strain per species)

Panel Requirements Example 4: Vibrio  species screening method = 50 inclusivity strains; 30  exclusivity strains

Inclusivity: 50 strains of Vibrio  species including at least 10 strains of V. cholera,  V. parahaemolyticus, V. vulnificus  (if claimed)

Exclusivity: Vibrio  species except  cholera, parahaemolyticus and  vulnificus Enterobacteriaceae  (1 strain per species) Non‐EB (1 strain per species)

Panel Requirements Example 5: Hepatitis A or Norovirus screening method = To be  determined with the Volunteer Expert

Inclusivity: TBD # of strains of claimed serotypes (ex. GI, GII, HAV)

Exclusivity:Non‐target viral strains (one strain per species; minimum 10‐15) Bacterial strains (one strain per species; minimum 5‐10) Parasites (one strain per species)

Panel Requirements • Panel requirements for various analyte claims are currently being  codified and will be posted to the RI website after review and  approval by the Microbiology Volunteer Experts. • Preference is for ~50% food isolates • Report strain number, source, and origin for each organism. Where  appropriate, also report presence/absence of virulence genes.

Testing Requirements • For qualitative methods:

• Grow inclusivity organisms according to all candidate method enrichment protocols. If the  only difference is time of enrichment, follow the shortest enrichment time. Dilute, if  necessary, to 100x LOD. • Grow exclusivity organisms under appropriate conditions (broth(s)/temperature) to  encourage growth.  Test at highest growth level achieved. • For quantitative methods: • Grow all organisms under appropriate conditions (broth(s)/temperature) to encourage  growth.  • Dilute inclusivity organisms to 100x LOD. • Test exclusivity organisms at the highest growth level achieved. • For ID Methods: • Streak inclusivity and exclusivity organisms to all claimed agars and/or dilute in all claimed  buffers. • Also include one non‐selective agar, if not already included in claim.

Testing and Reporting Requirements • For all methods: • Randomize and blind code all inclusivity and exclusivity cell suspensions. • Test 1 replicate of each blinded sample. • Report number of inclusivity organisms correctly detected or identified and  specify those that were not detected or were misidentified. • Report the number of exclusivity organisms correctly not detected or not  identified and specify those that were incorrectly detected or identified. • Exclusivity organisms incorrectly detected can be retested under method‐specific  enrichment conditions (applies to qualitative methods).

Testing and Reporting Requirements • Testing by the reference method is not required, but can be included  if desired. • Confirmation testing is not required, but the identification of each  strain should be documented in the lab. • Strain purity should be verified before use. • Testing may be carried out by the method developer or independent  lab.

Module M2: PTM and OMA  Matrix Studies

Overview • The Matrix Study determines the method performance in the claimed  matrices. • Matrix Studies for microbiology are typically a method comparison  between the candidate method and an appropriate reference method  for each matrix. • In rare cases, a reference method may not exist. • Method comparisons can be paired studies or unpaired studies. • Paired: Same enrichment or sample preparation procedure used for both  methods. Both methods analyze the same test portion. • Unpaired: Different enrichment or sample preparation procedures used for  the candidate and reference methods. The two methods analyze distinct test  portions.

Terminology

Qualitative Food Matrix Studies

Quantitative Food Matrix Studies

PTM and OMA SLV Matrix Study Designs

Method Type Study Design

Statistics

Acceptance Criteria

Qualitative If artificially contaminated: 5 Replicates High (all positive)

Probability of  Detection (POD)

95% CI on dPOD must include 0

20 Replicates Low (fractional positives*) 5 Replicates Noninoculated If naturally contaminated: 2 Lots 20 Replicates/lot One lot must have fractional positive results

Quantitative 5 Replicates High

Log(10) transform

5 Replicates Medium 5 Replicates Low [5 Replicates Noninoculated]

Difference of Means  (DOM) with 95% CI

[In development]

Expert Judgement

S r

*Fractional positives are defined as POD = 0.25‐0.75

OMA Collaborative (MLV) Study Designs

Method Type # Valid Data Sets Study Design per Collaborator

Statistics

Qualitative

≥10

1 Matrix 12 Replicates High 12 Replicates Low (fractional pos.*) 12 Replicates Noninoculated

LPOD, dLPOD + CI dLPOD CI must include “0” S r with 95% CI S R with 95% CI S L FP/FN rates in text of report

Quantitative ≥8

1 Matrix 2 Replicates High 2 Replicates Medium 2 Replicates Low [2 Replicates Noninoculated]

Log(10) transform DOM + 95% CI S r S R

*Fractional positives defined as LPOD = 0.25‐0.75

Matrix Study Designs – Recent Trends

• Candidate methods must always be confirmed • 1 colony from 1 agar plate per test portion is acceptable to follow through to  identification. • All instrument platforms must be tested in the matrix study. • Composite test portions (e.g., 375 g) for the candidate method are  compared to 25 g test portions for the reference method (if applicable). • Temperature claims • Enrichments ‐ if both incubation temperatures have a ± 1°C range and incubation is  conducted at 41.5°C (EU), then it is acceptable to claim for 42°C in the US • Selective agars – incubation at 36 ± 2°C is acceptable if the US method is 35 ± 1°C  and the EU method is 37 ± 1°C. • ISPAM approved equivalence of 35°C and 37°C for  Salmonella primary enrichments.

Matrix Study Designs – Recent Trends

• FDA and USDA will accept studies done according to ISO 16140‐2 if  BAM (FDA) and MLG (USDA) reference methods are used. • Validation of Environmental Surfaces • Comparison to FDA BAM method • For single surface claims, test with and without background organism present. • 12” x 12” surface claims – comparison is to 4” x 4” for the reference method  with the same number of organisms applied, but in 9‐fold larger volume for  12” x 12” (analogous to validating a composite test portion). • New proposal under consideration to add sanitizer to the environmental  surface evaluation scheme.

Matrix Study Designs – Recent Trends

• Collaborative Studies • Up to 3 collaborators per site using the same equipment if work is performed  independently • Independent test portions for each collaborator. • Independent analyses performed by each collaborator. • Single matrix must be the most challenging matrix/enrichment combination  from the SLV or PTM study. • 8 replicates per collaborator is acceptable for qualitative studies harmonized  with ISO 16140‐2, but 12 replicates is preferred.

Choosing Matrices

Choose matrices: • Likely to contain the target analyte

• Associated with outbreaks • Where analyte can survive

• pH, water activity, spices, etc. • Based on target market or customer for candidate method

Competitive Flora

• At least one food item and one surface must be tested with competing flora  (natural or artificial) • Naturally present in raw foods • Artificially added for environmental surfaces  • Simulates real‐world conditions  • If artificially contaminating, competing organism should be at least ten times  more abundant than target • Competing strain should be appropriate to the target

Food Preparation • Purchase sufficient amount of single lot for candidate method analyses, reference  method analyses, MPN determination (if applicable) and aerobic plate count. • Screen food item for natural contamination  • Recommend using both the candidate and reference methods. • Naturally contaminated matrices are preferred • Naturally contaminated food may be temperature abused to increase level of  contamination or diluted with uncontaminated matrix to decrease level of  contamination. • If naturally contaminated, test two lots of matrix, 20 replicates each. • One lot must meet fractional positive requirement • No 0 CFU level required. • If natural contamination not found, artificially inoculate each matrix with a  different target organism (strain, serovar, species).

Artificial Contamination of Foods • Use food‐borne isolates if possible, preferably from a similar food type • Choose inoculation species/serovars based on prevalence in the matrix or  outbreak data • Choose a different inoculation species/serovar for each claimed matrix • For single target assays, inoculate matrix with a single target strain • For multiplex assays, inoculate at least one matrix with all target strains • Strain source • Internationally recognized source (e.g., ATCC) • Laboratory isolate (must have documentation verifying identity of strain) • Bulk inoculation required whenever possible • Exceptions for “unit” matrices such as chicken carcasses and whole cantaloupe

Artificial Contamination of Foods

• Chop, cut, melt, temper, etc.

• Maintain the integrity of the matrix • Use the same lot of matrix for inoculated materials and noninoculated material • Do not dilute matrix with inoculum • For qualitative methods, inoculate:  • 1 material at a low level to achieve fractional positives • 1 material at a high level to aim for all positives (2‐5x inoculum of low level) • For quantitative methods, inoculate:

• 1 material at a low level within the method range • 1 material at a medium level within the method range • 1 material at a high level within the method range

Preparation of Test Materials

Preparation of Inoculum • Raw and cold‐processed foods should be inoculated with unstressed  organisms • Heat‐processed foods should be inoculated with heat‐stressed  organisms • Heat culture at 50˚C for ~10 min  • The heat stress must achieve 50 – 80% injury of the inoculum • The degree of injury is calculated as follows: 1 – ( n select / n nonselect ) x 100 n select = mean number of colonies on selective agar n nonselect = mean number of colonies on nonselective agar

Inoculation of Liquid Matrices

• Add diluted liquid culture to large quantity and mix • Use fresh culture for unprocessed liquids • Use heat‐stressed culture for heat‐processed liquids • Stabilize 48‐72 h at 2‐8°C • For quantitative  Listeria store for 24 h at 2‐8°C

Inoculation of Moist Solid Matrices • Use fresh culture for raw foods

• Use heat‐stressed culture for heat‐processed  foods • Add diluted culture • Drop‐wise • Spray • Incorporate by kneading, mixing, etc. • Stabilize 48‐72 h at 2‐8°C • For quantitative  Listeria store for 24 h at 2‐8°C

Inoculation of Dried Foods

• Add lyophilized culture to small amount of matrix  and mix • roll, shake, etc. • Add to bulk matrix and mix again • Stabilize 2 weeks at RT • Unless known, recommend aging study of  organism in matrix

Inoculation of Frozen Foods • Use fresh culture for raw foods

• Use heat‐stressed culture for heat‐processed foods • Thaw food product • Add diluted culture • Incorporate by stirring • Refreeze product • Stabilize for 2 weeks at ‐20°C

Inoculation of Chocolate

• Understand how to temper chocolate  ( http://www.instructables.com/id/How‐to‐ Temper‐Chocolate/?ALLSTEPS )  • When melted, add a small volume of liquid  culture or add dried culture to avoid ‘seizing’ the  chocolate and mix well

• Allow to reharden (temper) • Stabilize for 2 weeks at RT

Inoculation in Special Cases

Inoculate whole cantaloupe  on the outer rind

Inoculate chicken carcasses  in the cavity

Inoculation of Surfaces

• Dilute inoculum with stabilizer to high and low levels • 10% NFDM solution, hot dog juice, etc.

• Low level inoculum must yield fractional positive results for one of the methods • High level inoculum, 2‐5X concentration of low level, aims for all positives • Noninoculated level receives stabilizer only. • Perform and report plate count of inoculum • Inoculate surface areas in a random blinded manner with a volume of the  appropriate inoculum that allows even distribution across the surface without  excessive pooling of liquid • 2.25 mL for 12” x 12” area

• 250 µL for 4” x 4” area • 100 µL for 1” x 1” area

• Dry overnight (≥16 h) at room temperature – surfaces must be visibly dry • Recovery can vary depending on strain/surface combination and laboratory  conditions (temperature and humidity) – preliminary range finding is critical

Swiping of Surfaces

• Swipe 12” x 12” and 4” x 4” surface areas using sponges • Swipe 1” x 1” areas using swabs • Premoisten sponge or swab with neutralizing buffer as specified in  each method • Swipe entire surface area by swabbing/sponging back and forth 10  times horizontally and 10 times vertically • Hold sponges in sterile bags or swabs in sterile tubes with neutralizing  buffer for 2 h at room temperature before initiating enrichment

Confirmations • Confirmations must follow the Reference Method procedures • Biochemical gallery methods with Official Method status may be used in place  of traditional biochemical methods. • Other identification methods with Official Method status may be used for  identification of isolated colonies. • Alternative confirmation procedures can be validated • Confirmations must include isolation of suspect colonies • Regulatory agencies require a cultural isolate for defensible proof

Performing the Study – Test Portions

• From each material, remove the replicate test portions needed for the Candidate  and Reference Methods • Artificially or naturally contaminated matrix • Paired or unpaired analyses • Qualitative or Quantitative method comparison • Randomize and blind code the test portions for each method • From Materials 2 and 3, remove replicate test portions needed for Most Probable  Number (MPN) determination – Qualitative methods only • Not required for noninoculated material • Need at least 5 replicates at 3 levels for MPN • Reference method only • Can use the reference method replicates from the matrix study as one level of the MPN

MPN Replicates – Qualitative methods

• For MPN determination of Material 2 (low level), remove:  • 5 replicate large MPN test portions 2‐5x larger than the reference method test  portions and  • 5 replicate small MPN test portions 2‐5x smaller than the reference method test  portions  • For MPN determination of Material 3 (high level), remove: • 5 replicate medium MPN test portions 2‐5x smaller than the reference method test  portions • 5 replicate small MPN test portions 2‐5x smaller than the medium MPN test portions  • Analyze by the reference method, maintaining normal test portion to  enrichment media ratio. • MPNs not applicable to environmental surfaces, chicken carcasses, whole  cantaloupe, or other “unitized” matrixes.

MPN Replicates ‐ Example

Large Test  Portions 5 x 50 g 5 x 25 g*

Medium Test  Portions

Small Test  Portions

Reference  Method Enrichment

Matrix

Material

2 (Low level) 3 (High level)

20 x 25 g*

5 x 10 g 5 x 5 g

Raw ground  chicken

1:9 BPW 35°C, 20‐24 h 

MLG 4.10

5 x 10 g

*Test portions from matrix study analyzed by the reference method.

Replicates for Composite Test Portions

• Compositing is the combining of individual test portions for the  purpose of performing a single enrichment for cost savings when the  probability of any individual test portion being positive is very low • For example, laboratories may composite 15 individual 25‐g test portions into  a 375 g composite test portion • The composite enrichment must be positive if even one of the individual 25‐g  test portions is positive • Same needle now in a bigger haystack – must now detect one target cell in  375 g • Candidate method composite test portions are compared to  reference method individual (25 g) test portions

Replicates for Composite Test Portions

• Inoculate materials at high and low levels • Low level must achieve fractional positive results for 25‐g test portions • For the reference method, analyze 25‐g test portions of all materials • For the candidate method, mimic composite by combining one 25‐g  test portion from a test material with 300 g noninoculated matrix (for  a 325 g composite) or 350 g noninoculated matrix (for a 375‐g  composite)

Composite Test Portion Example

Performing the Study – Qualitative Methods

• Begin all enrichments on the same day • Blind coded candidate method test portions or environmental swabs/sponges • Blind coded reference method test portions or environmental swabs/sponges • MPN test portions (if applicable) • Follow each method as written • Use most current published version of the reference method • Confirm every enrichment (candidate, reference, and MPN  enrichments) according to the reference method procedures • Confirm candidate method enrichments according to alternate  candidate method confirmation procedure, if applicable

Analyzing Data – Qualitative Methods

• Use Probability of Detection (POD) statistics • POD is the proportion of positive analytical outcomes for a qualitative method for a given  matrix at a given bacterial level or concentration • POD = x/N • Unblind the data • Analyze each level of each matrix separately • Analyze data separately if there are multiple time points, multiple instruments,  manual and automated methods, etc. • Calculate POD and 95% confidence interval (CI) for each method • POD CP for the candidate method presumptive results • POD CC for the candidate method confirmation results • POD C for the candidate method final results (accounting for presumptive and confirmatory  results) • POD R for the reference method results

Analyzing Data – Qualitative Method SLV • Method comparison achieved by estimating bias of candidate method • Bias estimated as dPOD, the difference between two POD values • dPOD CP = POD CP – POD CC = bias between presumptive and confirmatory results of  the candidate method • dPOD C = POD C – POD R = bias between candidate and reference method results • Calculate 95% confidence intervals on dPOD values • Calculation depends on whether comparison is paired or unpaired • If the confidence interval on dPOD does not contain zero, then the two  POD values are statistically different (bias is significant).

Data Table – Qualitative Method SLV

Table 1. Comparison of presumptive and confirmation candidate method results

Presumptive

Confirmation

MPN b / test portion N a

Matrix (APC i )

Strain

Instrument

dPOD CP f

95% CI g

POD CP d (95% CI g ) 0.00 (0.00, 0.43) 0.00 (0.00, 0.43) 0.80 (0.58, 0.92) 0.80 (0.58, 0.92) 1.00 (0.57, 1.00) 1.00 (0.57, 1.00)

POD CC e (95% CI g ) 0.00 (0.00, 0.43) 0.00 (0.00, 0.43) 0.80 (0.58, 0.92) 0.80 (0.58, 0.92) 1.00 (0.57, 1.00) 1.00 (0.57, 1.00)

X c

X c

A

0

0

0.00 (‐0.47, 0.47)

N/A

5

B

0

0

0.00 (‐0.47, 0.47)

Smoked  Salmon (7.0 x 10 5 CFU/g)

A

16

16

0.00 (‐0.13, 0.13)

L.  monocytogenes  ATCC 15313

0.91 (0.64, 1.76)

20

B

16

16

0.00 (‐0.13, 0.13)

A

5

5

0.00 (‐0.47, 0.47)

7.34 (3.65, 16.76)

5

B 0.00 (‐0.47, 0.47) a N = Number of test potions. b MPN = Most Probable Number with 95% confidence interval.  c x = Number of positive test portions.  d POD CP =  probability of detection for the candidate presumptive results.  e POD CC = probability of detection for the candidate confirmed results.  f dPOD CP =  POD CP minus POD CC .  g 95% Confidence Interval.  i APC = Aerobic Plate Count.  5 5

Note : Comparison of presumptive and confirmation results is always a paired comparison.

Data Table – Qualitative Method SLV

Table 2. Comparison of candidate and reference method results

Confirmed Candidate

Reference

MPN b / test portion N a

Matrix

Strain

Instrument

dPOD C f

95% CI g

POD C d (95% CI g ) 0.00 (0.00, 0.43) 0.00 (0.00, 0.43) 0.80 (0.58, 0.92) 0.80 (0.58, 0.92) 1.00 (0.57, 1.00) 1.00 (0.57, 1.00)

POD R e (95% CI g ) 0.00 (0.00, 0.43) 0.00 (0.00, 0.43) 0.70 (0.48, 0.85) 0.70 (0.48, 0.85) 1.00 (0.57, 1.00) 1.00 (0.57, 1.00)

X c

X c

A

0

0

0.00 (‐0.43, 0.43)

N/A

5

B

0

0

0.00 (‐0.43, 0.43)

Smoked  Salmon (7.0 x 10 5 CFU/g)

A

16

14

0.10 (‐0.17, 0.35)

L.  monocytogenes  ATCC 15313

0.91 (0.64, 1.76)

20

B

16

14

0.10 (‐0.17, 0.35)

A

5

5

0.00 (‐0.43, 0.43)

7.34 (3.65, 16.76)

5

B 0.00 (‐0.43, 0.43) a N = Number of test potions. b MPN = Most Probable Number with 95% confidence interval.  c x = Number of positive test portions.  d POD C =  Probability of Detection for the confirmed candidate results .  e POD R = probability of detection for the reference method results .  f dPOD C = POD C  minus POD R .  g 95% Confidence Interval.  h N/A not applicable.  5 5

Analyzing Data – Qualitative Method MLV

• First, analyze data from each laboratory and each material individually for POD CP , POD CC , POD C ,  and POD R . • Calculate dPOD CP , and dPOD C with appropriate confidence intervals (paired or unpaired) for each  laboratory and each material. • Look for any statistically significant differences • Combine data across laboratories and calculate LPOD CP , LPOD CC , LPOD C , and LPOD R with 95%  confidence intervals. • Determine error estimates s r , s L , and s R and report with 95% confidence intervals. • Determine the p ‐value of the T test based on the X 2 distribution and compare to 0.10 to  determine whether the interlaboratory effect, s L , is statistically significant. This is the  homogeneity test of laboratory POD values. • Finally, determine dLPOD CP and dLOPD C with appropriate confidence intervals (paired or  unpaired) for each material. • In the text of the report, include the false positive and false negative rates for the comparison of  candidate method presumptive and confirmation results across all laboratories.

Data Table – Qualitative Method MLV

Table 1. Individual collaborator results for detection of  Salmonella in milk chocolate

Candidate confirmed (CC)

Candidate result (C)

Reference result (R)

dPOD C (95% CI) Unpaired

MPN/Test  portion (95% CI)

dPOD CP (95% CI) Paired

Candidate presumptive (CP)

Lab.

N x

POD CP

N x

POD CC

N x

POD C

N x

POD R

1 2 3

12 12 12

2 5 4

0.17 12 0.42 12 0.33 12

2 6 3

0.17 12 0.50 12 0.25 12

2 5 3

0.17 12 0.42 12 0.25 12

4 2 4

0.33

0.00 (‐0.21, 0.21) ‐0.17 (‐0.47, 0.18)

0.17 ‐0.08 (‐0.34, 0.18) 0.25 (‐0.11, 0.54)

0.33

0.08 (‐0.18, 0.34) ‐0.08 (‐0.40, 0.26)

4

12

3

0.25 12

4

0.33 12

3

0.25 12

7

0.58 ‐0.08 (‐0.34, 0.18) ‐0.33 (‐0.61, 0.05)

5

12

3

0.25 12

3

0.25 12

3

0.25 12

5

0.42

0.00 (‐0.21, 0.21) ‐0.17 (‐0.48, 0.19)

6

12

1

0.08 12

1

0.08 12

1

0.08 12

3

0.25

0.00 (‐0.21, 0.21) ‐0.17 (‐0.46, 0.15)

0.46 (0.35, 0.59)

7

12

3

0.25 12

4

0.33 12

3

0.25 12

6

0.50 ‐0.08 (‐0.34, 0.18) ‐0.25 (‐0.54, 0.12)

8

12

3

0.25 12

3

0.25 12

3

0.25 12

6

0.50

0.00 (‐0.21, 0.21) ‐0.25 (‐0.54, 0.12)

9

12

5

0.42 12

4

0.33 12

4

0.33 12

5

0.42

0.08 (‐0.18, 0.34) ‐0.08 (‐0.41, 0.27)

NA NA

NA NA NA

NA NA NA NA NA NA

NA

NA

NA

10 a

11 12 12 12 13 12 14 12

5 5 6 7

0.42 12 0.42 12 0.50 12 0.58 12

5 5 6 7

0.42 12 0.42 12 0.50 12 0.58 12

5 5 6 7

0.42 12 0.42 12 0.50 12 0.58 12

6 4 2 3

0.50 0.33 0.17 0.25

0.00 (‐0.21, 0.21) ‐0.08 (‐0.42, 0.28) 0.00 (‐0.21, 0.21) 0.08 (‐0.27, 0.41) 0.00 (‐0.21, 0.21) 0.33 (‐0.04, 0.61) 0.00 (‐0.21, 0.21) 0.33 (‐0.05, 0.61)

a Laboratory did not complete testing

Data Table – Qualitative Method MLV

Table 2. Collaborative study data summary and statistical analyses for detection of  Salmonella in milk chocolate

Parameter

Material 1

Material 2

Material 3

MPN/Test Portion

0.46 (0.35, 0.59)

3.81 (3.07, 5.49)

Candidate Presumptive (CP) x/N

2/156

52/156

152/156

0.01 (0.00, 0.05) 0.11 (0.10, 0.15) 0.00 (0.00, 0.04) 0.11 (0.10, 0.13)

0.33 (0.26, 0.41) 0.47 (0.42, 0.52) 0.03 (0.00, 0.19) 0.47 (0.43, 0.52)

0.97 (0.94, 0.99) 0.16 (0.14, 0.18) 0.03 (0.00, 0.07) 0.16 (0.14, 0.18)

LPOD CP

s r s L s R

p

0.5167

0.3875

0.1955

Candidate Confirmed (CC) x/N

0/156

53/156

152/156

0.00 (0.00, 0.02) 0.00 (0.00, 0.15) 0.00 (0.00, 0.15) 0.00 (0.00, 0.21)

0.34 (0.26, 0.42) 0.47 (0.42, 0.52) 0.04 (0.00, 0.19) 0.48 (0.43, 0.52)

0.97 (0.94, 0.99) 0.16 (0.14, 0.18) 0.03 (0.00, 0.07) 0.16 (0.14, 0.18)

LPOD CC

s r s L s R

p

1.0000

0.3709

0.1955

Candidate Result (C) x/N

0/156

50/156

152/156

0.00 (0.00, 0.02) 0.00 (0.00, 0.15) 0.00 (0.00, 0.15) 0.00 (0.00, 0.21)

0.32 (0.24, 0.40) 0.47 (0.42, 0.52) 0.04 (0.00, 0.19) 0.47 (0.42, 0.52)

0.97 (0.94, 0.99) 0.16 (0.14, 0.18) 0.03 (0.00, 0.07) 0.16 (0.14, 0.18)

LPOD CC

s r s L s R

p

1.0000

0.3769

0.1955

Reference Result (R) x/N

0/156

57/156

153/156

0.00 (0.00, 0.02) 0.00 (0.00, 0.15) 0.00 (0.00, 0.15) 0.00 (0.00, 0.21) 0.00 (‐0.02, 0.02) 0.01 (‐0.01, 0.05) 1.0000

0.37 (0.29, 0.44) 0.48 (0.43, 0.52) 0.00 (0.00, 0.18) 0.48 (0.44, 0.52) ‐0.05 (‐0.15, 0.06) ‐0.01 (‐0.12, 0.10) 0.5145

0.98 (0.95, 0.99) 0.13 (0.12, 0.15) 0.03 (0.00, 0.07) 0.14 (0.12, 0.16) ‐0.01 (‐0.05, 0.03) 0.00 (‐0.04, 0.04) 0.0877

LPOD R

s r s L s R

p

dLPOD CP dLPOD C

Performing the Study – Quantitative Methods

• Begin all analyses on the same day • Blind coded candidate method test portions • Blind coded reference method test portions • Paired or unpaired study • Follow each method as written • Use most current published version of the reference method • Use all claimed dilution buffers • Confirm every blind coded test portion according to the reference  method procedures, if applicable • Confirm blind coded candidate method test portions according to  alternate candidate method confirmation procedure, if applicable

Analyzing Data – Quantitative Methods

• Unblind the data • Analyze each level of each matrix separately • Perform a logarithmic transformation on the reported CFU/g or  CFU/mL: Log 10 [CFU/g + (0.1)f]  Where f is the reported CFU/unit corresponding to the smallest reportable  result and unit is the reported unit of measure (e.g., g, mL, in 2 , etc.).  • Perform outlier tests (Cochran and Grubbs) to identify significantly  outlying data points.  Data points may only be removed, however, for  justifiable cause.

Analyzing Data – Quantitative Methods • Plot the candidate method result (x‐axis) vs. the reference method  result (y‐axis) for each matrix. Calculate the slope and square of the  linear correlation coefficient (r 2 ) for each plot.  • Calculate repeatability as the standard deviation of replicates at each  concentration of each matrix for each method. • Calculate the mean difference between the candidate and reference  method transformed results with 95% confidence interval for each  concentration of each matrix.

Data Analysis – Quantitative Methods

Chicken breast, E. coli

0 1 2 3 4 5 6 7 8

y = 1.0073x + 0.2026 R² = 0.995

Candidate Method, log CFU/g

0

1

2

3

4

5

6

7

ISO 16649‐2, log CFU/g

Figure 1. Plot of candidate method versus reference method for  enumeration of E. coli  in raw chicken breast

Data Table – Quantitative Method SLV

Table 1. Matrix study results for enumeration of E. coli

Candidate Method

Reference Method

DOM (Δlog CFU/g)

Matrix

Level

N

95% CI

Mean (log CFU/g)

Mean (log CFU/g)

s r

s r

Low

5

2.236

0.125

2.261

0.084

‐0.025

(‐0.268, 0.217)

Raw ground  pork

Med

5

4.526

0.094

4.239

0.041

0.287

(0.154, 0.420)

High

5

6.465

0.056

6.210

0.109

0.256

(0.102, 0.409)

Low

5

2.388

0.079

2.198

0.067

0.190

(0.097, 0.284)

Raw chicken  breast

Med

5

4.541

0.079

4.263

0.044

0.278

(0.161, 0.394)

High

5

6.432

0.078

6.200

0.181

0.232

(0.007, 0.456)

Low

5

2.322

0.151

2.245

0.146

0.077

(‐0.122, 0.276)

Raw chicken  breast a

Med

5

4.371

0.042

4.211

0.066

0.160

(0.069, 0.251)

High

5

6.356

0.048

6.139

0.118

0.217

(0.092, 0.341)

Note : Acceptance criteria for DOM (difference of means) and 95% CI on DOM are currently under consideration.  a Matrix tested by the Independent Laboratory

Data Table – Quantitative Method MLV

Table 1. Log transformed counts for Enterobacteriaceae in powdered infant formula with probiotics

Material 1

Material 2

Material 3

Material 4

Reference Log 10 CFU/g A B

Candidate Log 10 CFU/g

Reference Log 10 CFU/g

Candidate Log 10 CFU/g

Reference Log 10 CFU/g

Candidate Log 10 CFU/g

Reference Log 10 CFU/g

Candidate Log 10 CFU/g

Collaborator A B 1 0.000 0.000 0.000 0.000 1.041 1.041 1.176 1.013 2.179 2.281 1.908 2.179 3.117 3.233 3.149 3.233 2 0.000 0.000 0.000 0.000 0.000 0.000 0.519 0.519 3.042 2.807 2.852 2.479 3.634 3.533 3.324 3.149 3 0.000 0.000 0.000 0.000 1.041 1.041 1.176 0.954 2.281 2.569 2.507 2.533 3.417 3.507 3.004 3.083 4 0.000 0.000 0.000 0.000 1.041 1.322 1.013 1.013 2.614 2.045 2.682 2.004 3.507 3.654 3.464 3.603 5 0.000 0.000 0.000 0.000 1.041 1.322 1.398 1.013 2.558 2.179 2.382 2.207 3.558 3.464 3.464 3.464 6 0.000 0.000 0.000 0.000 1.041 0.000 0.954 0.519 2.382 2.281 2.324 2.149 3.324 3.569 3.281 3.624 7 0.000 0.000 0.000 0.000 1.041 1.322 1.643 1.643 2.117 2.258 2.004 2.045 3.149 3.117 2.996 2.991 8 0.000 0.000 0.000 0.000 1.041 1.041 0.519 0.681 2.449 2.464 2.479 2.382 3.258 3.179 3.045 3.083 9 0.000 0.000 0.000 0.000 1.041 1.041 1.398 1.398 2.887 2.493 2.364 2.004 3.281 3.581 3.083 3.207 10 0.000 0.000 0.000 0.000 0.000 1.041 0.519 1.009 2.52 2.644 2.814 2.045 3.233 3.433 3.045 3.083 11 0.000 0.000 0.000 0.000 1.041 1.041 1.398 1.643 2.581 2.344 2.364 2.004 3.493 3.303 3.149 3.117 A a B A B A B A B A B A B

a A and B indicate duplicate test portions.

Data Table – Quantitative Method MLV

Table 2. Interlaboratory study result summary and statistics

Candidate Method

Reference Method

Mean Log 10  CFU/g

Mean

Matrix

Material 

DOM b

95% CI c

N a

s R

N

s r

s R

s r

Log 10

CFU/g

1

11 0.000 0.00 0.00 11 0.000 0.00 0.00

0.00

(0.00, 0.00)

Powdered  Infant  Formula with  Probiotics 24 h Inc. Powdered  Infant  Formula with  Probiotics 48 h Inc.

2

11 0.890 0.33 0.45 11 1.051 0.18 0.39

‐0.16

(‐0.31, ‐0.01)

3

11 2.453 0.20 0.26 11 2.305 0.27 0.27

0.15

(0.05, 0.25)

4

11 3.388 0.12 0.18 11 3.211 0.10 0.20

0.18

(0.11, 0.25)

1

11 0.000 0.00 0.00 11 0.000 0.00 0.00

0.00

(0.00, 0.00)

2

11 0.903 0.34 0.45 11 1.051 0.18 0.39

‐0.15

(‐0.31, 0.1)

3

11 2.467 0.25 0.25 11 2.305 0.27 0.27

0.16

(0.06, 0.26)

4

11 3.395 0.11 0.17 11 3.211 0.10 0.20

0.18

(0.12, 0.25)

a N = Number of collaborators that reported complete results b DOM = Difference of means c CI = Confidence interval

Module M3: Robustness Study

Overview • This study evaluates the ability of the method to remain unaffected by  small variations in method parameters that might be expected to occur  when the method is performed by an end user. • The method developer, in conjunction with the AOAC Project Manager, is  expected to make a good faith effort to choose parameters that can be  influenced by the end user and are most likely to affect the analytical  performance and determine the range of variation that can occur without  adversely affecting the analytical results • Parameters are varied and deviations tested in a factorial study and  compared to the baseline results of the test method. • 3 parameters, whenever possible, are chosen to be tested. • Results are compared to the baseline test results. • May utilize pure culture or may require inoculating a matrix depending on  parameters chosen.

Examples of Robustness Parameters • REAGENTS • SAMPLE

• temperature of reagent at time of  analysis • concentrations of reagents at  specified limits • source of reagents • age of reagents • quantity of reagents • mixing times • reaction times • temperature of analysis • flow rates • variance in measuring apparatus

• temperature of sample at time  of analysis • accuracy of obtaining sample  quantity • age of sample prior to analysis • extraction time • Test portion enrichment time or  temperature

Examples Study: Parameters to be Varied

Robustness Test  Parameter

Baseline Value  (Package Insert Instructions)

Low Value

High Value

Enrichment time

14 h

18 h

22 h

Lysis time

10 min

15 min

20 min

Time between  start of PCR and  hybridization

1 h

1.5 h

2 h

Examples Study: Factorial Design

Treatment  Combination

Time Between Start of PCR  and Hybridization

Enrichment Time

Lysis Time

1 2 3 4 5 6 7 8

14 h 14 h 14 h 14 h 22 h 22 h 22 h 22 h

10 min 10 min 20 min 20 min 10 min 10 min 20 min 20 min

1 h

2h

1 h 2 h 1 h 2 h 1 h 2 h

9

18 h

15 min

1.5 h

Robustness Study Designs

Method Type

Study Design

Statistics

Qualitative

Artificially contaminated: 10 Replicates Low (fractional positives a ) 10 Replicates Noninoculated or Inoculated with  Background Organism

Probability of Detection  (POD)

Quantitative

5 Replicates High 5 Replicates Low 5 Replicates Noninoculated

Log(10) transform

a Fractional positives are defined as POD = 0.25‐0.75 b dPOD values are calculated using nominal value as the baseline

Study • Inoculate matrices in the same manner as the matrix study. • Analyze each treatment combination/matrix separately compared to  the baseline test method results. • No confirmation of test portions is required

Conclusions • Method developers should be encouraged that statistically significant  findings in this experiment are not indicative of a faulty method, and  the discovery of significance is not a roadblock to successful method  validation.  • Success of this experiment is not conditional on a conclusion of “no  significant differences were observed.” • Any findings at this stage will be used to modify method kit  instructions, emphasize areas of caution, or even possibly to widen  specific parameter options.

Module M4: Product Consistency  and Stability

Product Consistency (Lot‐to‐Lot Variability)

• Study to confirm that the manufacturing of the  test kit and its components is consistent among  lots • Testing is performed on 3 unique lots • Each lot must be a uniquely manufactured  lot or consist of uniquely prepared  reagents, supplies, and kit components • Can be combined with stability testing in a  single study; if tested independent of  stability testing, age of test kit is not a  variable in this study, only variation among  lots

Product Stability

• Study to support the shelf life statement and confirm that there is no  observable change in performance of the method over the shelf life  under normal storage conditions. Three possible study designs are: 1. Testing is performed on lots representing the full span of the  shelf life of the kits (newly manufactured, middle of term, near  expiration date).   • This design allows the stability study to be performed concurrently  with the product consistency study when unique lots are tested 2. Testing is performed on 1 lot by testing at least 5 time points  over the shelf life of the kit 3. Preliminary stability testing is conducted using accelerated  studies  • Provides only a rough estimate of shelf‐life • Real time data supporting the entire shelf life of the kit under  normal storage conditions must be submitted as soon as available

Product Consistency & Stability: Combined Real‐ Time Study Design for Quantitative Methods

• Three lots of test kits 

• One lot near the expiration date • One lot near the middle of the expiration period • One lot recently manufactured.  • Conducted using pure culture, matrix, DNA, etc.  • Fifteen (15) total replicates evaluated for each lot.   • 5 replicates of the target analyte at a high level • 5 replicates of the target analyte at a low level • 5 replicates of a non‐target analyte at a high level • Test in a randomized blind coded fashion. • Decode results and analyze for effects on bias and repeatability. • Data demonstrating no statistical difference in detection  between lots and no significant time slope are required.

Quantitative 3 lots of kits • 5 replicates of target  analyte at low level • 5 replicates of target  analyte at high level • 5 replicates of blanks Bias & repeatability

Product Consistency & Stability: Combined Real‐Time  Study Design for Qualitative Methods • Three lots of test kits  • One lot near the expiration date • One lot near the middle of the expiration period • One lot recently manufactured.  • Conducted using pure culture, inoculated matrix, DNA, etc.  • Twenty (20) total replicates evaluated for each lot.  

Qualitative 3 lots of kits • 10 replicates of target material • 10 replicates of non‐ target material at high  level POD + CI

• 10 replicates of the target analyte at a fractional level (2‐8) • 10 replicates of the non‐target analyte at an undiluted level • Test in a randomized blind coded fashion. • Decode, calculate POD values and confidence intervals and analyze  data for variable detection between lots/time points.

Product Consistency & Stability: Combined Real‐ Time Study Design for Identification Methods

• Three lots of test kits 

• One lot near the expiration date • One lot near the middle of the expiration period • One lot recently manufactured.  • Conducted using pure culture, matrix, DNA, etc.  • Fifteen (15) total replicates evaluated for each lot.   • 10 of the target analyte • 5 of the non‐target analyte • Test in a randomized blind coded fashion. • Decode results and determine number of correct  identification 

ID Method 3 lots of kits

• 10 target strains • 5 non‐target strains # correct results

Independent Product Consistency Study

• For test methods that have multiple components with different lot identification numbers • Lots of the individual components will be interchanged prior to analysis • Testing will be conducted in same manner as combined consistency/stability study (20  replicates for qualitative, etc.)

Kit Component 1 Lot 1 Lot 2 Lot 3 Lot 1 Lot 2 Lot 3 Lot 1 Lot 2 Lot 3

Kit Component 2 Lot 1 Lot 1 Lot 1 Lot 2 Lot 2 Lot 2 Lot 3 Lot 3 Lot 3

Kit Component 3 Lot 3 Lot 2 Lot 1 Lot 1 Lot 2 Lot 3 Lot 2 Lot 1 Lot 3

Product Consistency & Stability: Independent  Stability Study

Qualitative

Quantitative

ID Method

Real time or accelerated

Real time or accelerated

Real time or accelerated

1 lot of kits

1 lot of kits

1 lot of kits

• 10 replicates of target material • 10 replicates of non‐target  material at high level

• 5 replicates of target material at  high level • 5 replicates of target material at  low level • 5 replicates of non‐target  material at high level 5 time points over the shelf life of  the test kit

• 10 target strains • 5 non‐target strains

5 time points over the shelf life of  the test kit

5 time points over the shelf life of  the test kit

POD + CI

Bias & repeatability

# correct results

Accelerated Study Design

Accelerated Stability Study

Claimed Shelf Life

Required Storage  Temperature

Storage  Temperature

Component

Shelf Life

Time Points

Test Solution 1

25°C

9 mos. (270 d)

55°C

0, 2, 5, 8, 11, 14 d

Test Solution 2

‐20°C

9 mos. (270 d)

25°C

0, 1, 2, 4, 6, 8 d

Test Solution 3

‐20°C

9 mos. (270 d)

25°C

0, 1, 2, 4, 6, 8 d

• Data generated is based on the Arrhenius model  • Assuming Ea = 20 kcal ex.  1 year at 5°C ≈ 32 days at 25°C, and 1 year at 25°C ≈ 45 days at 45°C • Test kit is stored at an elevated temperature to age the product more quickly • Number of replicates/time points is consistent with standard stability study

Parting Thoughts

• Product consistency and stability testing can be conducted independently or  combined • Stored enrichments or diluents from the matrix studies may be used for this study • Work with your AOAC Technical Consultant to ensure that the testing performed  meets the study design requirements for an AOAC validation

Module M5: Harmonization  Studies

Harmonization Studies: Overview

• What is a harmonization study? • A single validation that allows for certification from AOAC and an ISO 16140 approval  organization (AFNOR, MicroVal, NordVal).  • The study is designed to meet all the requirements need for certification including • Data requirements • Statistical analysis • Submission guidelines • The goal is to achieve optimal efficiency and avoid duplication of efforts in order  to meet regulatory and product safety testing requirements. • Reference standards • Testing requirements

Harmonization Studies:  Guidelines & Standards

• Appendix J: AOAC INTERNATIONAL Methods Committee Guidelines for  Validation of Microbiological Methods for Food and Environmental  Surfaces (2012)

• Performance Tested Methods SM   (PTM) • Official Methods of Analysis SM  (OMA) http://www.eoma.aoac.org/app_j.pdf

• AOAC Research Institute uses guidelines and references developed by  AOAC INTERNATIONAL and AOAC volunteer subject matter experts for  its testing protocols and data evaluation

Harmonization Studies:  Guidelines & Standards

• ISO 16140‐2 (2016):  Microbiology of the food chain — Method validation  — Part 2: Protocol for the validation of alternative (proprietary) methods  against a reference method https://www.iso.org/standard/54870.html • ISO/DIS 16140‐6 (2018):  Microbiology of the food chain — Method  validation — Part 6: Protocol for the validation of alternative (proprietary)  methods for Microbial Confirmation and Typing Procedures https://www.iso.org/standard/66327.html • The ISO 16140 series (1‐6), developed by ISO TC34/SC9/WG3 forms the  basis for the European certification of alternative methods, thus fulfilling  European legislation.

Harmonization Studies: Overview

• Combines aspects of AOAC PTM and AOAC OMA programs  that are also required for ISO 16140 • Inclusivity & Exclusivity • Matrix studies (referred to RLOD studies in ISO) • Interlaboratory study • Matrix studies, inclusivity & exclusivity, and ILS are conducted  by the Expert Lab, no internal data is allowed (16140  requirement) • Since all matrix study work is done by the Expert Lab, an additional  independent lab study is not required for PTM • Additional PTM studies (lot‐to‐lot, stability, robustness,  instrument variation) are performed by the method developer • Data not submitted as part of ISO 16140 certification • Stability, lot‐to‐lot covered under manufacturing standard

Harmonization Studies: Expert Laboratory Requirements

• AOAC Approved Lab  • MicroVal Approved Lab                  (if performing  AOAC/MicroVal) • AFNOR Approved Lab                  (if performing AOAC/AFNOR) • ISO 17025 accreditation                      (required by AFNOR &  MicroVal) • Scope of ISO 17025  Accreditation must contain  reference standards  performed in validation

Harmonization Studies:  Application Process

AOAC • Application is submitted for consulting  services • Technical consultant is assigned and  will work with you to develop the  AOAC protocol • Protocol can be PTM, Harmonized  PTM/OMA, or OMA (direct pathway) • AOAC TC will work with Expert Lab to  ensure matrix selection and  inclusivity/exclusivity lists meet AOAC  and ISO Technical Committee  requirement • AOAC TC will submit Protocol for  review by Volunteer Reviewer and  members of the Expert Review Panel

• After feedback is received, the AOAC  TC will update protocol • Upon approval, the testing protocol is  provided to the Expert Laboratory for  performing the analysis • To reduce the chance of additional  work it is highly recommended to  have the Expert Laboratory and  AOAC TC complete the study  protocols before any testing is  initiated

Made with FlippingBook - Online catalogs