New-Tech Europe | Sep 2017 | Digital Edition

person’s needs are different, so the display can be adjusted to customize the view. For example, the display can project a cardboard cutout of a person’s appearance, boost certain colors, or zoom in or out. These are only a couple of examples. Many other medical AR applications are in the “proof-of-concept” stage, including live-streaming of patient visits with remote transcription services; remote consultation during surgical procedures; and assistive learning for children with autism. Building Blocks For AR Systems What building blocks for AR design? Many AR applications are still on the drawing board, but existing wearable and portable medical devices already incorporate many of the core hardware technologies, with Microchip Technology at the forefront. The block diagram for Microchip’s wearable home health monitor design (Figure 4), for example, includes a powerful processor with analog functions, sensor fusion capability, low power operation, and cloud connectivity. Similarly, the XLP (eXtreme Low Power) family of PICmicrocontrollers is designed to maximize battery life in wearable and portable applications. XLP devices feature low-power sleep modes with current consumption down to 9nA and a wide choice of peripherals. The PIC32MK1024GPD064, for example, is a mixed-signal 32-bit machine that runs at 120MHz, with a double-precision floating-point unit and 1MB of program memory. Signal conditioning peripheral blocks include four operational amplifiers (op amps), 26 channels of 12-bit analog-to-digital conversion (ADC), three digital-to-analog converters (DACs), and numerous connectivity

Figure 4: A high-end wearable home health monitor includes many of the blocks needs for an AR application (Source: Microchip Technology)

options. Microchip also offers a sensor fusion hub, as well as several wireless connectivity options including Bluetooth and Wi-Fi modules. Combined with third-party optics and other blocks, these components can form the basis of a low-cost AR solution. Finally, The Microsoft HoloLens core combines a 32-bit processor, a sensor fusion processor, and a high-definition optical projection system. Other key components include wireless connectivity, a camera and audio interface, power management, and cloud-based data analytics. Conclusion AR technologies have already demonstrated their value in medical applications and promise to bring big changes over the next few years to both the clinic and the operating room. Although the optics add a new dimension, many of the hardware building blocks have already been proven in high-volume wearable and portable products.

Paul Pickering: As a freelance technical writer, Paul Pickering has written on a wide range of topics including: semiconductor components & technology, passives, packaging, power electronic systems, automotive electronics, IoT, embedded software, EMC, and alternative energy. Paul has over 35 years of engineering and marketing experience in the electronics industry, including time spent in automotive electronics, precision analog, power semiconductors, embedded systems, logic devices, flight simulation and robotics. He has hands-on experience in both digital and analog circuit design, embedded software, and Web technologies. Originally from the North-East of England, he has lived and worked in Europe, the US, and Japan. He has a B.Sc. (Hons) in Physics & Electronics from Royal Holloway College, University of London, and has done graduate work at Tulsa University This article was provided by Mouser Electronics

56 l New-Tech Magazine Europe

Made with FlippingBook flipbook maker