New-Tech Europe | Oct 2016 | Special Edition For Electronica 2016

data and storing or transferring that data to a server, to its analyses and the formulation of results, and ultimately acting on those results. The companies that can most benefit from the IIoT aren’t necessarily best placed to implement such a framework; it will instead fall to providers looking to bring the value of the IIoT to a wide range of customers. This is already in evidence as some companies reposition themselves to provide all or part of an IIoT framework. Electric Imp is one example, it now offers a Connectivity Platform comprising hardware (or ‘nodes’), software (including an operating system), cloud-based services and management tools. Some of its customers are already using this platform to gather real-time data across a number of industries including commercial refrigeration, HVAC systems and manufacturing equipment. Wireless Connectivity Provides the Feedback While sensors provide the ability to measure almost any real-world parameter, it is connectivity that provides the feedback to an IIoT framework. Connecting industrial equipment that is often large, in challenging environments or even constantly moving is difficult. While there are many wire-based approaches to this, such as CAN, Industrial Ethernet or RS232/422 as an example, they all exhibit the same drawback of needing a physical connection. In a growing number of applications, wireless connectivity has been proven to offer significant advantages, not least the flexibility of having no physical connection. Most wireless protocols have been conceived to

Figure 1: Block diagram of Murata Electronics’ LBWA1ZV1CD-716 module

offers 23 I/Os that can be configured as analogue inputs/outputs, SPI, UART, I2C or general purpose digital I/O. The flexibility of the module’s I/O would allow it to be implemented as an IIoT node with minimal configuration, as it is able to host an application and connect directly to the many sensors now equipped with I2C interfaces, for example. The ability to provide built-in access to its cloud-based services makes Electric Imp a compelling optionwhen adopting an IIoT strategy, however some applications may require a more open approach, by offering the ability to connect to a different network or service provider. In this case it may be necessary to develop more of the middleware needed to interface to a backend, fortunately module developers appreciate this and are now providing modules with Software Development Kits (SDKs), such as the WGM110A1MV1 Wizard Gecko from Silicon Labs.

offer security and robustness, and are capable of operating in almost any environment. With volumes driven by the consumer sector, the hardware needed to implement a wireless connection is now available at a compellingly low price point, enabling module manufacturers to compete with the cost of wire-based connectivity while offering all of the advantages inherent with a wireless solution. As well as a turn-key platform, Electric Imp also provides the elements of an IIoT solution, including a Wi-Fi module developed to connect IoT nodes to its cloud service. The LBWA1ZV1CD-716 smart module is brought to market by Murata Electronics and integrates a Wi-Fi connectivity device from Broadcom with a powerful ARM Cortex-M4 based microcontroller from STMicroelectronics. Measuring just 10mm by 7.9mm by 1.25mm, the smart module also

New-Tech Magazine Europe l 61

Made with