New-Tech Europe | March 2019

Unleash the Power CUDA and GPGPU in the Industrial Environment

Dipl.- Inform. Med. Wolfgang K. Weber

Hardly any application needs more resources than a modern computer game, and graphics cards have always been real giants in terms of computing power. The desire to use this performance, which is now in the teraflops range, was born early on. Today, 10 years after Berkeley University's first application SETI@home, the number of applications is countless, and for industrial applications, CompactPCI systems provide the right hardware platform. TFLOPS The tasks of a video card require a breathtakingly fast access to the image memory with relatively simple operations, but these run on as many many pixels as possible in parallel. Accordingly, the graphics processor is equipped with many similar cores, the

so-called "streaming multiprocessors" (SMs). Each SM in turn usually contains 8 streaming processor cores plus registers and support logic. Today, high-end graphics cards can achieve performance levels of 5-15 TFlops, which is several times what the strongest Intel CPUs can do. In order to be able to use this computing power in a general way for arbitrary calculations, various programming tools exist, such as OpenCL or CUDA (Compute Unified Device Architecture). By now this is referred to as general purpose computing on a graphics processing unit, GPGPU for short. Today, there is hardly a field of application in which the computing acceleration due to parallel processing in the graphics card is not used. NVIDIA's GPU application page covers everything from bioinformatics (sequencing, molecular dynamics) to financial math (credit risk), fluid

dynamics, medical imaging, artificial intelligence, pattern recognition, and weather and climate forecasting, all of which are well known as computationally intensive. PATTERNS But there are also applications that seem harmless at first glance and yet are more and more in the limelight: radar/lidar applications. The basic principle is familiar to every reader of this journal: a high frequency pulse (e.g., 24GHz) is emitted by a transmitting antenna, reflected and scattered by a metallic object, and partially echoed onto a receiving antenna. Based on the runtime of the pulse going back and forth and the speed of light the distance can be calculated. By taking advantage of the Doppler effect (frequency shift of the transmission signal)

30 l New-Tech Magazine Europe

Made with FlippingBook flipbook maker