Tornetta Rockwood Adults 9781975137298 FINAL VERSION

40

SECTION ONE • General Principles

31. Bottlang M, Doornink J, Byrd GD, et al. A nonlocking end screw can decrease frac- ture risk caused by locked plating in the osteoporotic diaphysis. J Bone Joint Surg Am . 2009;91(3):620–627. 32. Bottlang M, Doornink J, Fitzpatrick DC, et al. Far cortical locking can reduce stiff- ness of locked plating constructs while retaining construct strength. J Bone Joint Surg Am . 2009;91(8):1985–1994. 33. Bottlang M, Doornink J, Lujan TJ, et al. Effects of construct stiffness on healing of fractures stabilized with locking plates. J Bone Joint Surg Am . 2010;92(suppl 2):12– 22. 34. Bottlang M, Feist F. Biomechanics of far cortical locking. J Orthop Trauma . 2011;25:S21–S28. 35. Bottlang M, Fitzpatrick DC, Sheerin D, et al. Dynamic fixation of distal femur frac- tures using far cortical locking screws: a prospective observational study. J Orthop Trauma . 2014;28(4):181–188. 36. Bottlang M, Lesser M, Koerber J, et al. Far cortical locking can improve healing of fractures stabilized with locking plates. J Bone Joint Surg Am . 2010;92(7):1652– 1660. 37. Bottlang M, Mohr M, Simon U, et al. Acquisition of full-field strain distributions on ovine fracture callus cross-sections with electronic speckle pattern interferometry. J Biomech . 2008;41(3):701–705. 38. Bottlang M, Tsai S, Bliven EK, et al. Dynamic stabilization with active locking plates delivers faster, stronger, and more symmetric fracture-healing. J Bone Joint Surg Am . 2016;98(6):466–474. 39. Bottlang M, Tsai S, Bliven EK, et al. Dynamic stabilization of simple fractures with active plates delivers stronger healing than conventional compression plating. J Orthop Trauma . 2017;31(2):71–77. 40. Bouxsein ML, Seeman E. Quantifying the material and structural determinants of bone strength. Best Pract Res Clin Rheumatol . 2009;23(6):741–753. 41. Brooks DB, Burstein AH, Frankel VH. The biomechanics of torsional fractures. The stress concentration effect of a drill hole. J Bone Joint Surg Am . 1970;52(3):507–514. 42. Carriero A, Abela L, Pitsillides AA, et al. Ex vivo determination of bone tissue strains for an in vivo mouse tibial loading model. J Biomech . 2014;47(10):2490– 2497. 43. Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am . 1977;59(7):954–962. 44. Carter DR, Schwab GH, Spengler DM. Tensile fracture of cancellous bone. Acta Orthop Scand . 1980;51(1–6):733–741. 45. Casanova M, Schindeler A, Little D, et al. Quantitative phenotyping of bone frac- ture repair: a review. Bone Key Rep . 2014;3:1–8. 46. Chao EY, Inoue N, Elias JJ, et al. Enhancement of fracture healing by mechanical and surgical intervention. Clin Orthop Relat Res . 1998;(suppl 355):S163–S178. 47. Chapman MW, Gordon JE, Zissimos AG. Compression-plate fixation of acute frac- tures of the diaphyses of the radius and ulna. J Bone Joint Surg Am . 1989;71(2):159– 169. 48. Cheal EJ, Mansmann KA, DiGioia AM 3rd, et al. Role of interfragmentary strain in fracture healing: ovine model of a healing osteotomy. J Orthop Res .1991;9(1):131– 142. 49. Chen AL, Joseph TN, Wolinksy PR, et al. Fixation stability of comminuted humeral shaft fractures: locked intramedullary nailing versus plate fixation. J Trauma . 2002;53(4):733–737. 50. Chilov MN, Cameron ID, March LM; Australian National Health and Medical Research Council. Evidence-based guidelines for fixing broken hips: an update. Med J Aust . 2003;179(9):489–493. 51. Chiodo CP, Macaulay AA, Palms DA, et al. Patient compliance with postop- erative lower-extremity non-weight-bearing restrictions. J Bone Joint Surg Am . 2016;98(18):1563–1567. 52. Chong AC, Miller F, Buxton M, et al. Fracture toughness and fatigue crack propa- gation rate of short fiber reinforced epoxy composites for analogue cortical bone. J Biomech Eng . 2007;129(4):487–493. 53. Claes L. The mechanical and morphological properties of bone beneath internal fixation plates of differing rigidity. J Orthop Res . 1989;7(2):170–177. 54. Claes L. Biomechanical principles and mechanobiologic aspects of flexible and locked plating. J Orthop Trauma . 2011;25(suppl 1):S4–S7. 55. Claes L, Augat P, Suger G, et al. Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res . 1997;15(4):577–584. 56. Claes L, Eckert-Hubner K, Augat P. The fracture gap size influences the local vas- cularization and tissue differentiation in callus healing. Langenbecks Arch Surg . 2003;388(5):316–322. 57. Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol . 2012;8(3):133–143. 58. Claes L. Measuring bone healing in osteosynthesis with external fixator using the Fraktometer FM 100. Chirurg . 1991;62(4):354–355. 59. Claes L. Mechanobiology of fracture healing part 2: relevance for internal fixation of fractures. Unfallchirurg . 2017;120(1):23–31. 60. Claes LE, Cunningham JL. Monitoring the mechanical properties of healing bone. Clin Orthop Relat Res . 2009;467(8):1964–1971. 61. Claes LE, Heigele CA, Neidlinger-Wilke C, et al. Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res . 1998(suppl 355):S132–S147. 62. Cohen H, Kugel C, May H, et al. The impact velocity and bone fracture pattern: forensic perspective. Forensic Sci Int . 2016;266:54–62. 63. Corrales LA, Morshed S, Bhandari M, et al. Variability in the assessment of frac- ture-healing in orthopaedic trauma studies. J Bone Joint Surg Am . 2008;90(9):1862– 1868. 64. Cronier P, Pietu G, Dujardin C, et al. The concept of locking plates. Orthop Trauma- tol Surg Res . 2010;96(4):S17–S36. 65. Cunningham JL, Evans M, Kenwright J. Measurement of fracture move- ment in patients treated with unilateral external skeletal fixation. J Biomed Eng . 1989;11(2):118–122.

66. Dabke HV, Gupta SK, Holt CA, et al. How accurate is partial weightbearing? Clin Orthop Relat Res . 2004;(421):282–286. 67. Damm P, Kutzner I, Bergmann G, et al. Comparison of in vivo measured loads in knee, hip and spinal implants during level walking. J Biomech . 2017;51:128–132. 68. Damm P, Schwachmeyer V, Dymke J, et al. In vivo hip joint loads during three meth- ods of walking with forearm crutches. Clin Biomech (Bristol, Avon) . 2013;28(5):530– 535. 69. Davenport SR, Lindsey RW, Leggon R, et al. Dynamic compression plate fixation: a biomechanical comparison of unicortical vs bicortical distal screw fixation. J Orthop Trauma . 1988;2(2):146–150. 70. Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng . 2007;54(11):1940–1950. 71. Deluca PA, Lindsey RW, Ruwe PA. Refracture of bones of the forearm after the removal of compression plates. J Bone Joint Surg Am . 1988;70(9):1372–1376. 72. Dias JJ. An analysis of the nature of injury in fractures of the neck of the femur. Age Ageing . 1987;16(6):373–377. 73. Dibbern K, Kempton LB, Higgins TF, et al. Fractures of the tibial plateau involve similar energies as the tibial pilon but greater articular surface involvement. J Orthop Res . 2016;35(3):618–624. 74. D’Lima DD, Fregly BJ, Colwell CW, Jr. Implantable sensor technology: measuring bone and joint biomechanics of daily life in vivo. Arthritis Res Ther . 2013;15(1):203. 75. Dobele S, Gardner M, Schroter S, et al. DLS 5.0—the biomechanical effects of dynamic locking screws. PLoS One . 2014;9(4):e91933. 76. Duda GN, Kirchner H, Wilke HJ, et al. A method to determine the 3-D stiffness of fracture fixation devices and its application to predict inter-fragmentary movement. J Biomech . 1998;31(3):247–252. 77. Duda GN, Sollmann M, Sporrer S, et al. Interfragmentary motion in tibial osteoto- mies stabilized with ring fixators. Clin Orthop Relat Res . 2002;(396):163–172. 78. Eastaugh-Waring SJ, Joslin CC, Hardy JR, et al. Quantification of fracture heal- ing from radiographs using the maximum callus index. Clin Orthop Relat Res . 2009;467(8):1986–1991. 79. Edgerton BC, An KN, Morrey BF. Torsional strength reduction due to cortical defects in bone. J Orthop Res . 1990;8(6):851–855. 80. Ehmke LW, Fitzpatrick DC, Krieg JC, et al. Lag screws for hip fracture fixa- tion: evaluation of migration resistance under simulated walking. J Orthop Res . 2005;23(6):1329–1335. 81. Elfar J, Menorca RM, Reed JD, et al. Composite bone models in orthopaedic surgery research and education. J Am Acad Orthop Surg . 2014;22(2):111–120. 82. Elkins J, Marsh JL, Lujan T, et al. Motion predicts clinical callus formation: con- struct-specific finite element analysis of supracondylar femoral fractures. J Bone Joint Surg Am . 2016;98(4):276–284. 83. English TA, Kilvington M. In vivo records of hip loads using a femoral implant with telemetric output (a prelimary report). J Biomed Eng . 1979;1(2):111–115. 84. Epari DR, Schell H, Bail HJ, et al. Instability prolongs the chondral phase during bone healing in sheep. Bone . 2006;38(6):864–870. 85. Erhardt JB, Stoffel K, Kampshoff J, et al. The position and number of screws influ- ence screw perforation of the humeral head in modern locking plates: a cadaver study. J Orthop Trauma . 2012;26(10):e188–e192. 86. Farragos AF, Schemitsch EH, McKee MD. Complications of intramedullary nailing for fractures of the humeral shaft: a review. J Orthop Trauma . 1999;13(4):258–267. 87. Fitzpatrick DC, Denard PJ, Phelan D, et al. Operative stabilization of flail chest injuries: review of literature and fixation options. Eur J Trauma Emerg Surg . 2010;36(5):427–433. 88. Fitzpatrick DC, Doornink J, Madey SM, et al. Relative stability of conventional and locked plating fixation in a model of the osteoporotic femoral diaphysis. Clin Biomech (Bristol, Avon) . 2009;24(2):203–209. 89. Foux A, Yeadon AJ, Uhthoff HK. Improved fracture healing with less rigid plates. A biomechanical study in dogs. Clin Orthop Relat Res . 1997;(339):232–245. 90. Fregly BJ, D’Lima DD, Colwell CW Jr. Effective gait patterns for offloading the medial compartment of the knee. J Orthop Res . 2009;27(8):1016–1021. 91. Freude T, Schroeter S, Plecko M, et al. Dynamic-locking-screw (DLS)-leads to less secondary screw perforations in proximal humerus fractures. BMC Musculoskelet Disord . 2014;15:194. 92. Freude T, Schroter S, Gonser CE, et al. Controlled dynamic stability as the next step in “biologic plate osteosynthesis”—a pilot prospective observational cohort study in 34 patients with distal tibia fractures. Patient Saf Surg . 2014;8(1):3. 93. Fung YC. Biomechanics: Mechanical Properties of Living Tissues . 2nd ed. New York: Springer; 1993. 94. Gardner MJ, Griffith MH, Demetrakopoulos D, et al. Hybrid locked plating of oste- oporotic fractures of the humerus. J Bone Joint Surg Am . 2006;88(9):1962–1967. 95. Gardner MJ, Silva MJ, Krieg JC. Biomechanical testing of fracture fixation con- structs: variability, validity, and clinical applicability. J Am Acad Orthop Surg . 2012;20(2):86–93. 96. Gardner MJ, Weil Y, Barker JU, et al. The importance of medial support in locked plating of proximal humerus fractures. J Orthop Trauma . 2007;21(3):185–191. 97. Gardner TN, Evans M. Relative stiffness, transverse displacement and dynamiza- tion in comparable external fixators. Clin Biomech (Bristol, Avon) . 1992;7(4):231– 239. 98. Gardner TN, Evans M, Hardy J, et al. Dynamic interfragmentary motion in fractures during routine patient activity. Clin Orthop Relat Res . 1997;(336):216–225. 99. Gasser B, Boman B, Wyder D, et al. Stiffness characteristics of the circular ilizarov device as opposed to conventional external fixators. J Biomech Eng . 1990;112(1):15– 21. 100. Gautier E, Sommer C. Guidelines for the clinical application of the LCP. Injury . 2003;34(suppl 2):B63–B76. 101. Ghiasi MS, Chen J, Vaziri A, et al. Bone fracture healing in mechanobiological mod- eling: a review of principles and methods. Bone Rep . 2017;6:87–100.

Copyright © 2020 Wolters Kluwer Health, Inc. Unauthorized reproduction of this content is prohibited.

LWBK1698-C01_p001-042.indd 40

05/12/18 8:39 PM

Made with FlippingBook - Online catalogs