Tornetta Rockwood Adults 9781975137298 FINAL VERSION

42

SECTION ONE • General Principles

173. Ponce BA, Thompson KJ, Raghava P, et al. The role of medial comminution and cal- car restoration in varus collapse of proximal humeral fractures treated with locking plates. J Bone Joint Surg Am . 2013;95(16):e113(111–117). 174. Poole WEC, Wilson DGG, Guthrie HC, et al. “Modern” distal femoral locking plates allow safe, early weight-bearing with a high rate of union and low rate of failure: five-year experience from a United Kingdom major trauma centre. Bone Joint J . 2017;99-B(7):951–957. 175. Rice C, Christensen T, Bottlang M, et al. Treating tibia fractures with far cortical locking implants. Am J Orthop (Belle Mead NJ) . 2016;45(3):E143–E147. 176. Richter H, Plecko M, Andermatt D, et al. Dynamization at the near cortex in locking plate osteosynthesis by means of dynamic locking screws: an experimental study of transverse tibial osteotomies in sheep. J Bone Joint Surg Am . 2015;97(3):208–215. 177. Ries Z, Hansen K, Bottlang M, et al. Healing results of periprosthetic distal femur fractures treated with far cortical locking technology: a preliminary retrospective study. Iowa Orthop J . 2013;33:7–11. 178. Rixford E. Theory and treatment of spiral fractures. Ann Surg . 1925;81(1):368– 373. 179. Robinovitch SN, Hayes WC, McMahon TA. Prediction of femoral impact forces in falls on the hip. J Biomech Eng . 1991;113(4):366–374. 180. Roderer G, Gebhard F, Duerselen L, et al. Delayed bone healing following high tibial osteotomy related to increased implant stiffness in locked plating. Injury . 2014;45(10):1648–1652. 181. Rosson J, Egan J, Shearer J, et al. Bone weakness after the removal of plates and screws. Cortical atrophy or screw holes? J Bone Joint Surg Br . 1991;73(2):283–286. 182. Rupprecht M, Sellenschloh K, Grossterlinden L, et al. Biomechanical evaluation for mechanisms of periprosthetic femoral fractures. J Trauma . 2011;70(4):E62–E66. 183. Salminen S, Pihlajamäki H, Avikainen V, et al. Specific features associated with fem- oral shaft fractures caused by low-energy trauma. J Trauma . 1997;43(1):117–122. 184. Sanders R, Haidukewych GJ, Milne T, et al. Minimal versus maximal plate fixation techniques of the ulna: the biomechanical effect of number of screws and plate length. J Orthop Trauma . 2002;16(3):166–171. 185. Sarmiento A, McKellop HA, Llinas A, et al. Effect of loading and fracture motions on diaphyseal tibial fractures. J Orthop Res . 1996;14(1):80–84. 186. Schandelmaier P, Krettek C, Tscherne H. Biomechanical study of nine different tibia locking nails. J Orthop Trauma . 1996;10(1):37–44. 187. Schell H, Epari DR, Kassi JP, et al. The course of bone healing is influenced by the initial shear fixation stability. J Orthop Res . 2005;23(5):1022–1028. 188. Schiuma D, Plecko M, Kloub M, et al. Influence of peri-implant bone quality on implant stability. Med Eng Phys . 2013;35(1):82–87. 189. Schneider E, Goldhahn J, Burckhardt P. The challenge: fracture treatment in osteo- porotic bone. Osteoporos Int . 2005;16(suppl 2):S1–S2. 190. Schneider E, Sasse S, Schmidt HG, et al. Zur Biomechanik des Ringfixateurs—Beit- räge einzelner Strukturelemente. Unfallchirurg . 1992;95:580–587. 191. Schwachmeyer V, Damm P, Bender A, et al. In vivo hip joint loading during post-operative physiotherapeutic exercises. PLoS One . 2013;8(10):e77807–77808. 192. Seebeck J, Goldhahn J, Morlock MM, et al. Mechanical behavior of screws in nor- mal and osteoporotic bone. Osteoporos Int . 2005;16(suppl 2):S107–S111. 193. Seebeck J, Goldhahn J, Städele H, et al. Effect of cortical thickness and cancel- lous bone density on the holding strength of internal fixator screws. J Orthop Res . 2004;22(6):1237–1242. 194. Seide K, Triebe J, Faschingbauer M, et al. Locked vs. unlocked plate osteosynthe- sis of the proximal humerus—a biomechanical study. Clin Biomech (Bristol, Avon) . 2007;22(2):176–182. 195. Seide K, Weinrich N, Wenzl ME, et al. Three-dimensional load measurements in an external fixator. J Biomech . 2004;37(9):1361–1369. 196. Shefelbine SJ, Augat P, Claes L, et al. Intact fibula improves fracture healing in a rat tibia osteotomy model. J Orthop Res . 2005;23(2):489–493. 197. Simpson H, Augat P. Experimental Research Methods in Orthopedics and Trauma . Stuttgart: Thieme; 2015. 198. Sloan J, Holloway G. Fractured neck of the femur: the cause of the fall? Injury . 1981;13(3):230–232. 199. Soenen M, Baracchi M, De Corte R, et al. Stemmed TKA in a femur with a total hip arthroplasty: is there a safe distance between the stem tips? J Arthroplasty . 2013;28(8):1437–1445. 200. Sommer C, Gautier E, Müller M, et al. First clinical results of the locking compres- sion plate (LCP). Injury . 2003;34(suppl 2):B43–B54. 201. Sommers MB, Fitzpatrick DC, Madey SM, et al. A surrogate long-bone model with osteoporotic material properties for biomechanical testing of fracture implants. J Biomech . 2007;40(15):3297–3304.

202. Steiner M, Claes L, Ignatius A, et al. Numerical simulation of callus healing for optimization of fracture fixation stiffness. PLoS One . 2014;9(7):e101370. 203. Stoffel K, Dieter U, Stachowiak G, et al. Biomechanical testing of the LCP—how can stability in locked internal fixators be controlled? Injury . 2003;34(suppl 2): B11–B19. 204. Stoffel K, Lorenz KU, Kuster MS. Biomechanical considerations in plate osteosyn- thesis: the effect of plate-to-bone compression with and without angular screw stability. J Orthop Trauma . 2007;21(6):362–368. 205. Stoffel K, Stachowiak G, Forster T, et al. Oblique screws at the plate ends increase the fixation strength in synthetic bone test medium. J Orthop Trauma . 2004;18(9):611–616. 206. Taylor M, Prendergast PJ. Four decades of finite element analysis of ortho- paedic devices: where are we now and what are the opportunities? J Biomech . 2015;48(5):767–778. 207. Tepic S, Remiger AR, Morikawa K, et al. Strength recovery in fractured sheep tibia treated with a plate or an internal fixator: an experimental study with a two-year follow-up. J Orthop Trauma . 1997;11(1):14–23. 208. Tingart MJ, Lehtinen J, Zurakowski D, et al. Proximal humeral fractures: regional differences in bone mineral density of the humeral head affect the fixation strength of cancellous screws. J Shoulder Elbow Surg . 2006;15(5):620–624. 209. Tsai S, Fitzpatrick DC, Madey SM, et al. Dynamic locking plates provide symmetric axial dynamization to stimulate fracture healing. J Orthop Res . 2015;33(8):1218– 1225. 210. Uhthoff HK, Poitras P, Backman DS. Internal plate fixation of fractures: short his- tory and recent developments. J Orthop Sci . 2006;11(2):118–126. 211. Vasarhelyi A, Baumert T, Fritsch C, et al. Partial weight bearing after surgery for fractures of the lower extremity: is it achievable? Gait Posture . 2006;23(1):99–105. 212. Viberg B, Rasmussen KMV, Overgaard S, et al. Poor relation between biomechan- ical and clinical studies for the proximal femoral locking compression plate. Acta Orthop . 2017;88(4):427–433. 213. Vicenti G, Pesce V, Tartaglia N, et al. Micromotion in the fracture healing of closed distal metaphyseal tibial fractures: a multicentre prospective study. Injury . 2014;45(suppl 6):S27–S35. 214. Wehner T, Claes L, Ignatius A, et al. Optimization of intramedullary nailing by numerical simulation of fracture healing. J Orthop Res . 2012;30(4):569–573. 215. Wehner T, Claes L, Niemeyer F, et al. Influence of the fixation stability on the healing time—a numerical study of a patient-specific fracture healing process. Clin Biomech (Bristol, Avon) . 2010;25(6):606–612. 216. Wehner T, Penzkofer R, Augat P, et al. Improvement of the shear fixation stability of intramedullary nailing. Clin Biomech (Bristol, Avon) . 2011;26(2):147–151. 217. Weiser L, Korecki MA, Sellenschloh K, et al. The role of inter-prosthetic distance, cortical thickness and bone mineral density in the development of inter-prosthetic fractures of the femur: a biomechanical cadaver study. Bone Joint J . 2014;96- B(10):1378–1384. 218. Wenger R, Oehme F, Winkler J, et al. Absolute or relative stability in minimal inva- sive plate osteosynthesis of simple distal meta or diaphyseal tibia fractures? Injury . 2017;48(6):1217–1223. 219. Westerhoff P, Graichen F, Bender A, et al. In vivo measurement of shoulder joint loads during walking with crutches. Clin Biomech (Bristol, Avon) . 2012;27(7):711–718. 220. White AA 3rd, Panjabi MM, Southwick WO. The four biomechanical stages of fracture repair. J Bone Joint Surg Am . 1977;59(2):188–192. 221. Wilson CJ, Schutz MA, Epari DR. Computational simulation of bone fracture heal- ing under inverse dynamisation. Biomech Model Mechanobiol . 2017;16(1):5–14. 222. Wittenberg RH, Shea M, Swartz DE, et al. Importance of bone mineral density in instrumented spine fusions. Spine . 1991;16(6):647–652. 223. Wolf S, Janousek A, Pfeil J, et al. The effects of external mechanical stimulation on the healing of diaphyseal osteotomies fixed by flexible external fixation. Clin Biomech (Bristol, Avon) . 1998;13(4–5):359–364. 224. Woo SL, Lothringer KS, Akeson WH, et al. Less rigid internal fixation plates: his- torical perspectives and new concepts. J Orthop Res . 1984;1(4):431–449. 225. Wroblewski BM. The mechanism of fracture of the femoral prosthesis in total hip replacement. Int Orthop . 1979;3(2):137–139. 226. Yamagishi M, Yoshimura Y. The biomechanics of fracture healing. J Bone Joint Surg Am . 1955;37-A(5):1035–1068. 227. Zani L, Erani P, Grassi L, et al. Strain distribution in the proximal Human femur during in vitro simulated sideways fall. J Biomech . 2015;48(10):2130–2143. 228. Zehnder S, Bledsoe JG, Puryear A. The effects of screw orientation in severely osteoporotic bone: a comparison with locked plating. Clin Biomech (Bristol, Avon) . 2009;24(7):589–594.

Copyright © 2020 Wolters Kluwer Health, Inc. Unauthorized reproduction of this content is prohibited.

LWBK1698-C01_p001-042.indd 42

05/12/18 8:39 PM

Made with FlippingBook - Online catalogs