Previous Page  463 / 1245 Next Page
Information
Show Menu
Previous Page 463 / 1245 Next Page
Page Background

1D example

 

  

 

 

1D

'

' d '

2D cartesian

,

', '

',

' d 'd '

2D polar Google Hankel transforms!

3D cartesian

, ,

', ', '

',

',

f g x

f x g x x x

f

g x y

f x y g x x y y x y

f g x y z

f x y z g x x y y



 

 

 

 

 

' d 'd 'dz '

z z x y

  

  

 

Convolution - an averaging

operation where at each point

a weighted mean of the

original function is calculated.

The (invariant!!!) weighting

function is often called kernel.

Calculation techniques:

Convolutions - many dose calculation problems can be approximated as convolutions

(invariant kernel -> for homogeneous media):