Table of Contents Table of Contents
Previous Page  512 / 1224 Next Page
Information
Show Menu
Previous Page 512 / 1224 Next Page
Page Background

The method

Many orthogonal bases exist

In example:

Spherical harmonics,

, are a

series of functions defined on the surface

of a sphere that exhibit orthogonality:

and therefore they can be used to expand

any function defined on the surface of a

sphere in an infinite series:

) ,(

m

l

Y



=

=

=

=

d m

l

Y f

mlC

l

m

l

Y

l

l m

ml

C

f

)

,(

) ,

(

,

,

0

) ,(

,

) ,(

'

)ˆ(

4

)ˆ, ,(

) ,(

,

,

0

)ˆ(

) ,(

,

)ˆ, ,(





 

=

=



−=

= 

d m

l

Y Er

Er

ml

l

m

l

Y

l

l

m

Er

ml

Er

ll' δ mm'

δ dφ

2

1

1

)

(cos

) ,('

'

) ,(

dφ dθ sin

2

) ,('

'

) ,(

=

 

=

 

 

d

m

l

Y m

l

Y

m

l

Y m

l

Y

Note we have described the energy

fluence in spherical coordinates

and that we have NOT discretized

in direction