New-Tech Europe Magazine | May 2018
technologies. Outstanding lighting output per watt of power has been the primary driver of initial LED adoption in commercial buildings, greatly improving on traditional lighting technologies. Advanced LED technologies are becoming increasingly versatile, efficient, secure and capable of supporting available wattages in PoE lighting systems. Meanwhile, the ability to migrate lighting controls to IP-based infrastructure is transforming lighting into a service and IoT building asset that can be controlled synergistically along with other building functions. Increased integration is driving not only better control, leading to drastic energy saving, increased occupant comfort and improved productivity, but also more meaningful and usable data collection by distributed sensor systems, as part of the lighting network infrastructure. Optimised to deliver low-voltage power and reliable communications, PoE gateways distribute power and connect luminaires, sensor nodes, wall dimmers, and other local devices and controls to the IP network and control manager. Each gateway is connected to a switch port with a Cat5e cable. The IP nodes are responsible for power and data distribution to local devices. Lights, sensors, motorised blinds and other devices become digital objects that can be configured, grouped together and controlled via software. Good cable design is important to optimise the low- voltage power distribution for efficient and cost-effective implementation. Well-implemented PoE control systems also deliver high availability of uninterrupted power service, greater network resiliency and reducedoperating expenses. New networks and devices become faster to deploy since PoE networks do not require power outlets at each device endpoint. Commercial buildings are prime candidates for PoE lighting and automation systems, which can be either designed in as part of a building’s infrastructure or retrofitted into its existing infrastructure. Ideally, designs need to optimise power and
designed to introduce and support two additional power types: up to 60W (Type 3 or UPoE: Universal Power over Ethernet) and up to 90-100W (Type 4 or PoH: Power over HDBaseT) per switch port. Utilising all four twisted pairs, UPoE technology can deliver more power than PoE+, with improved efficiency and reduced channel losses. Using UPoE, for instance, a PoE node can receive up to 51W of power. This allows the option to optimise the low-voltage cable infrastructure by daisy-chaining multiple devices on a single UPoE port, reducing the number of ports and amount of cabling required in a system. The new IEEE standards also improve efficiency and allow a wider range of device functions and support — and can be delivered on standard low-voltage Class D (Cat5e) cables using the same infrastructure that the IT industry has deployed for over a decade. A distributed network allows building or enterprise-wide precision control, integration with other building automation systems, and better data to inform workforce and building usage decisions. Standards and specifications establish protocols for both power delivery and communications links for data exchange. However, this doesn’t tell the entire story about the value PoE networks can bring to building control systems. The proliferation of smart technologies is setting the stage, with architects, electricians and installers on the frontline using PoE LED fixtures to transform buildings. Legacy lighting fixtures can readily be retrofitted with LEDs and sensors capable of local smart control. These lighting systems in older buildings have utilised AC power that has been converted to low-voltage power. Retrofitting existing lighting fixtures with LEDs to replace fluorescent and compact fluorescent lighting was the first step for many building operators. Penetration in commercial building markets has made LEDs surprisingly cost competitive versus other lighting
data distribution in order to minimise the number of PoE ports required. If the power requirement for a group of devices is below 50W, for example, a single PoE gateway can power and control multiple drivers in a daisy-chain configuration. System software tools can provide support during the complete lifecycle of a networked control system, from design and installation to live operation, monitoring and building maintenance. PoE networks can deliver a range of advantages for building operators, starting with the supply of both power and data over a single-layer infrastructure, using proven, scalable and future-proof standard Ethernet cable. The DC power supplied is ideal for LED and sensor applications, using low-voltage and safe-to-install standard RJ-45 connectors, without the need for a certified electrician. These PoE networks enable advanced control of highly tunable LED luminaries and dynamic/bio-adaptive controls, creating new paradigms and value in commercial building connectivity and data analytics. Easy convergence and integration with existing building automation systems and infrastructure allow digital zoning and re-zoning, increasing flexibility to optimise building zones for specific use cases, with easy repurposing to meet future needs. Granular sensor arrays allow superior automation and data reporting, as well as simple implementation of new use cases to increase productivity and operational efficiency. PoE technology takes LED lighting in commercial spaces to the next level by further reducing energy consumption and improving quality of light, with smoother intensity and dimming functions, and dynamically adjustable colour output to create more comfortable and productive work environments. Building operators have ready access to light status, real-time energy consumption data, sensor- based occupancy reporting, air quality, temperature and other environmental
32 l New-Tech Magazine Europe
Made with FlippingBook flipbook maker