Previous Page  69 / 208 Next Page
Information
Show Menu
Previous Page 69 / 208 Next Page
Page Background

Ventilator-derived VCO

2

measurements to determine REE

67

3

REFERENCES

1.

de Betue CT, van SteenselenWN, Hulst JM, et al. Achieving energy goals at day 4 after admission in

critically ill children; predictive for outcome? Clin Nutr 2015;34:115-22.

2.

Mikhailov TA, Kuhn EM, Manzi J, et al. Early enteral nutrition is associated with lower mortality in

critically ill children. JPEN J Parenter Enteral Nutr 2014;38:459-66.

3.

Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum

Nutr Clin Nutr 1985;39 Suppl 1:5-41.

4.

Energy and protein requirements. Report of a joint FAO/WHO/UNU expert consultation. World

Health Organ Tech Rep Ser 1985;724:1-206.

5.

Coss-Bu JA, Jefferson LS, Walding D, David Y, Smith EO, Klish WJ. Resting energy expenditure in

children in a pediatric intensive care unit: comparison of Harris-Benedict and Talbot predictions

with indirect calorimetry values. Am J Clin Nutr 1998;67:74-80.

6.

Framson CM, LeLeiko NS, Dallal GE, Roubenoff R, Snelling LK, Dwyer JT. Energy expenditure in

critically ill children. Pediatr Crit Care Med 2007;8:264-7.

7.

Mehta NM, Bechard LJ, Cahill N, et al. Nutritional practices and their relationship to clinical outcomes

in critically ill children--an international multicenter cohort study. Crit Care Med 2012;40:2204-11.

8.

Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism.

J Physiol 1949;109:1-9.

9.

Kerklaan D, Fivez T, Mehta NM, et al. Worldwide Survey of Nutritional Practices in PICUs. Pediatr Crit

Care Med 2016;17:10-8.

10. Mehta NM, Smallwood CD, Joosten KF, Hulst JM, Tasker RC, Duggan CP. Accuracy of a simplified

equation for energy expenditure based on bedside volumetric carbon dioxide elimination

measurement--a two-center study. Clin Nutr 2015;34:151-5.

11. Verhoeven JJ, Hazelzet JA, van der Voort E, Joosten KF. Comparison of measured and predicted

energy expenditure in mechanically ventilated children. Intensive Care Med 1998;24:464-8.

12. Bland JM, Altman DG. Statistical methods for assessing agreement between twomethods of clinical

measurement. Lancet 1986;1:307-10.

13. Stapel SN, de Grooth HJ, Alimohamad H, et al. Ventilator-derived carbon dioxide production to

assess energy expenditure in critically ill patients: proof of concept. Crit Care 2015;19:370.

14. Wenzel U, Wauer RR, Schmalisch G. Comparison of different methods for dead space measurements

in ventilated newborns using CO2-volume plot. Intensive Care Med 1999;25:705-13.

15. Merilainen PT. Metabolic monitor. Int J Clin Monit Comput 1987;4:167-77.

16. Briassoulis G, Michaeloudi E, Fitrolaki DM, Spanaki AM, Briassouli E. Influence of different ventilator

modes on Vo(2) and Vco(2) measurements using a compact metabolic monitor. Nutrition

2009;25:1106-14.

17. Clapis FC, Auxiliadora-Martins M, Japur CC, Martins-Filho OA, Evora PR, Basile-Filho A. Mechanical

ventilation mode (volume x pressure) does not change the variables obtained by indirect

calorimetry in critically ill patients. J Crit Care 2010;25:659 e9-16.