Previous Page  101 / 278 Next Page
Information
Show Menu
Previous Page 101 / 278 Next Page
Page Background

Page 99/273

1.3

Identification des surfaces productrices et évaluation de la surface active totale correspondante S

a (

m

2

).

Pour le niveau de service 1, les surfaces productrices sont limitées aux surfaces imperméables.

1.4

Calcul de la surface globale minimum d’infiltration diffuse S

min

nécessaire pour évacuer le volume

S

a

.P/1000 (m

3

) sur une durée D (en jour) en prenant en compte la perméabilité retenue K (m/s) du sol

(cf.

§ III.5)

:

= (

, .

× × −

)

(Équation 54)

Si S

min

est négatif, passer à l’étap

e 1.8.

Cette expression prend en compte l’infiltration de la pluie reçue directement par la surface

d’infiltration, qui vient diminuer la capacité disponible pour infiltrer les apports extérieurs : si P est

proche de 86,4.10

3

x K x D, S

min

devient très grand, et si P > 86,4.10

3

x K x D, le problème n’a pas de

solution par infiltration dans l’emprise de l’opération.

Si S

a

/S

min

> 30, alors S

min

= S

a

/30 (on considère qu’il ne faut pas dépasser un FC de 30 pour de

l’infiltration diffuse voi

r Tableau 19)

.

1.5

Identification sur le plan masse de toutes les surfaces mobilisables gravitairement pour l’infiltration.

1.6

Détermination de la surface maximale S

mob

mobilisable pour l’infiltration diffuse sur le plan masse en

prenant en compte les critères du

§ V.1.4,

1.7

Vérification que S

min

≤ S

mob

. Si oui, passer à l’étap

e 1.9.

1.8

Si S

min

> S

mob

ou S

min

<0 diminution des surfaces productrices (revêtements poreux et toitures

végétalisées) et retour en étape

1.1 o

u faisabilité d’ouvrages ponctuels (puits d’infiltration) pour infiltrer

un volume équivalent à K x ( S

min

– S

mob

) x D. En cas d’impossibilité, aller e

n 1.11.

1.9

Mettre en œuvre la phase 2

1.10Itération pour le niveau de service 2 : retour à l’étape

1.2 e

n intégrant les toitures terrasses

végétalisées dans les surface productrices (en modulant éventuellement leur contribution en fonction

de leur caractère intensif ou extensif).

1.11Gestion des situations non traitées, notamment au-delà du niveau de service 2, en prévoyant le transfert

des excédents (cf. colonnes 5 et 6 du

Tableau 18)

vers des exutoires centralisés (puits d’infiltration,

eaux de surface, réseau aval) via des stockages adaptés. La disponibilité de ces exutoires et ces

stockages ne dispense pas de mobiliser aussi et en priorité des capacités d’évacuation diffuse, pour

minimiser les coûts d’exploitation, limiter les volumes des stockages aval, et limiter la concentration

dans l’espace des points de rejets. Pour le niveau de service 3, toutes les capacités de stockage et la

plupart des exutoires amont sont saturés. L’évacuation des débits excédentaires peut se faire par

écoulement de surface sur des espaces peu vulnérables (cf.

§ V.1.1)

.

Phase 2 : Conception des ouvrages et aménagement et de leurs connections

2.1

Par ajustements successifs, distribution d’une surface d’infiltration S

0

inférieure ou égale à S

mob

sous

forme d’ouvrages à intégrer dans le plan masse du projet : Noues, bassins d’infiltration, jardins de pluie,

fossés/tranchées drainant. Implantation des ouvrages ponctuels éventuels. On privilégie certains types

d’ouvrages en fonction de contraintes imposées sur la qualité des eaux infiltrées (cf. colonnes 3 et 4 du

Tableau 18)

.

2.2

Connexion de chaque surface productrice à un ouvrage d’infiltration, calcul du facteur de charge

FC

de

chaque ouvrage

=

é à ′

(Équation 55)

et vérification que le facteur de charge est compatible avec le type d’ouvrage (cf. colonne 1 du

Tableau 18)

.

2.3

Calcul des volumes de stockage nécessaires pour chaque ouvrage d’infiltration (cf. colonne 2 du

Tableau 18)

, en prenant en compte les exigences éventuelles de confinement de la pollution accidentelle (cf.

colonnes 3 et 4 du

Tableau 18)

, et la capacité d’évacuation des exutoires choisis en appliquant la