Table of Contents Table of Contents
Previous Page  801 / 1228 Next Page
Information
Show Menu
Previous Page 801 / 1228 Next Page
Page Background

Inverse Optimisation and Planning

(2000 – today)

Numerical Solvers / Optimisers (minimisation of aggregated

f

)

Diversity in considering:

Exact Solver

Linear Programming (LP)

(e.g. Simplex)

Deterministic

Gradient based

(e.g. Broyden-Fletcher-Goldfarb-Shanno-BFGS,

L-BFGS, Fletcher-Reeves-Polak-Ribiere-FRPR, …)

Gradient-free

(e.g. Nelder-Mead Simplex Algorithm, …)

Stochastic/Probabilistic

Simulating Annealing (SA)

Genetic/Evolutionary Algorithms (GA)

All those solvers are based on iterative approaching of global minimum !!!