Table of Contents Table of Contents
Previous Page  520 / 1224 Next Page
Information
Show Menu
Previous Page 520 / 1224 Next Page
Page Background

The method … is ready

I have GxM equations of the form (1) @ each

voxel (GxMxN

vox

in total)

begin with E1 (highest energy group)

)5(

) ( ) ,(

1

)( ,

)4(

) ˆ(

) (

1

)( ,

1

)(

,

,

)3(

'

)' ( )

,(,

1 1'

'

)(

' ,,

)2(

0

) ,(

1'

)(

' , ,

)(

' ,,

)ˆ,( , ,

)1(

)

(

1 4

, ,

, ,

)( ,

,

)( ,

ˆ

dEEfErt

gE

gE

rgt

dEnwn

m

l

YEf

N

n

rng

g

E

gE

r

gm

l

dEdE EfE Erls

gE

gE

gE

gE

rg

gls

l

l

l m

m

l

Y

G

g

r

gml

rg gls

rng scat

q

pr r

P

p

ngpq

ng scat q rng gt

rng

 

=

=

 

=

→

= −

=

−=

=

 −

=

=

+

=

 +



0

)(

,1

=

iter

r

n

make an initial guess for

calculate cross sections from (3) & (5)

calculate the expansion from (4)

use these in (2) to calculate q

scat,1,n

solve (1) for

1 )

( ,1

=

iter rn

if convergence criterion met, proceed with g=2

BUT…:

1. I need to be efficient

(t~ GxMxN

vox

x#iters.x order of legendre exp.)

& work

with finite voxels

2. I need to account for inhomogeneities

3. I need to work with real sources

4. I need to account for finite patient dimensions

if convergence criterion not met, re-iterate