Table of Contents Table of Contents
Previous Page  761 / 1224 Next Page
Information
Show Menu
Previous Page 761 / 1224 Next Page
Page Background

Summary –

Inverse Optimisation

Diversity of Solutions regarding objective function minimisation:

Exact Solver

Linear Programming (LP)

(e.g. Simplex)

Deterministic

Gradient based

(e.g. Broyden-Fletcher-Goldfarb-Shanno-BFGS,

L-BFGS

HIPO

, Fletcher-Reeves-Polak-Ribiere-FRPR)

Gradient-free

(e.g. Nelder-Mead Simplex Algorithm, …)

Stochastic/Probabilistic

Simulating Annealing (SA)

IPSA

Genetic/Evolutionary Algorithms (GA)

Diversity of techniques of dose analysis (sampling points, where values

of the objective functions are analysed)