Background Image
Table of Contents Table of Contents
Previous Page  47 / 78 Next Page
Information
Show Menu
Previous Page 47 / 78 Next Page
Page Background

A GLOBAL OUTLOOK ON METHANE GAS HYDRATES

47

REFERENCES

Archer, D. (2007). Methane hydrate stability and anthropogenic climate

change. Biogeosciences Discuss., 4, 993-1057

Barnes, R.O. and Goldberg, E.D. (1976). Methane production and

consumption in anoxic marine sediments. Geology, 4, 297-300

Biastoch, A., Treude, T., Rüpke, L.H., Riebesell, U., Roth, C., Burwicz,

E.B., Park, W., Latif, M., Böhning, C.W., Madec, G. and Wallmann,

K. (2011). Rising Arctic Ocean temperatures cause gas hydrate

destabilization and ocean acidification. Geophys. Res. Lett., 38,

L08602, doi:08610.01029/02011GL047222

Blasing, T.J. (2013). “Recent greenhouse gas concentrations”. Carbon

Dioxide Information Analysis Center, Oak Ridge National Laboratory.

http://cdiac.ornl.gov/pns/current_ghg.html

Boetius, A. and Suess, E. (2004). Hydrate Ridge: A natural laboratory

for the study of microbial life fueld by methane from near-surface gas

hydrates. Chem. Geol., 205, 291-310

Bohrmann, G., Greinert, J., Suess, E. and Torres, M. (1998).

Authigenic carbonates from the Cascadia subduction zone and

their relation to gas hydrate stability. Geology, 26, 647-650. doi:

10.1130/0091-7613(1998)026<0647:acftcs>2.3.co;2

Booth, J.S., O’Leary, D.W., Popenoe, P. and Danforth, W.W. (1993).

U.S. Atlantic continental slope landslides: their distribution, general

attributes, and implications. In Submarine landslides: Selected studies

in the U.S. Exclusive Economic Zone (eds. W.C. Schwab, H.J. Lee and

D.C. Twichell). pp. 14-22. U.S. Geological Survey Bulletin no. 2002

Borowski, W.S., Paull, C.K. and Ussler, W., III (1999). Global and local

variations of interstitial sulfate gradients in deep-water, continental

margin sediments: Sensitivity to underlying methane and gas

hydrates. Mar. Geol., 159, 131-154

Boswell, R., Collett, T., Frye, M., Shedd, B., McConnell, D. and Shelander,

D. (2012). Subsurface gas hydrates in the northern Gulf of Mexico. J.

Mar. Pet. Geol., 34, 4-30.

Boucher, O., Friedlingstein, P., Collins, B. and Shine, K.P. (2009). The

indirect global warming potential and global temperature change

potential due to methane oxidation. Environ. Res. Lett., 4, 044007

Bouriak, S., Vanneste, M. and Saoutkine, A. (2000). Inferred gas

hydrates and clay diapirs near the Storegga Slide on the southern edge

of the Voring Plateau, offshore Norway. Mar. Geol., 163, 125-148

Bryn, P., Berg, K., Forsberg, C.F., Solheim, A. and Kvalstad, T.J. (2005).

Explaining the Storegga Slide. Mar. Petrol. Geol., 22, 11-19. doi:

10.1016/J.Marpetgeo.2004.12.003

Buffett, B. and Archer, D. (2004). Global inventory of methane clathrate:

Sensitivity to changes in the deep ocean. Earth Planet Sc. Lett., 227,

185-199

Bugge, T., Befring, S., Belderson, R.H., Eidvin, T., Jansen, E., Kenyon,

N.H., Holtedahl, H. and Sejrup, H.P. (1987). A giant 3-stage

submarine slide off Norway. Geo-Mar. Lett., 7, 191-198

Carney, R.S. (1994). Consideration of the oasis analogy for

chemosynthetic communities at Gulf-of-Mexico hydrocarbon vents.

Geo-Mar. Lett., 14, 149-159

Childress, J.J., Fisher, C.R., Brooks, J.M., Kennicutt, M.C., Bidigare, R.

and Anderson, A.E. (1986). A methanotrophic marine molluscan

(Bivalvia, Mytilidae) symbiosis - Mussels fueled by gas. Science, 233,

1306-1308

Colwell, F.S. and Ussler III, W. (2010). Global scale consequences of

biological methane production. In Handbook of hydrocarbon and lipid

microbiology (ed. K.N. Timmis). pp. 3056-3065. Springer-Verlag, Berlin

Cordes, E.E., Cunha, M.R., Galéron, J., Mora, C., Roy, K.O.-L., Sibuet, M.,

Gaever, S.V., Vanreusel, A. and Levin, L.A. (2010). The influence of

geological, geochemical, and biogenic habitat heterogeneity on seep

biodiversity. Mar. Ecol., 31, 51-65

Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., Herzen von, R.P.,

Ballard, R.D., Green, K., Williams, D., Brainbridge, A., Crane, K. and

Andel van, T.H. (1979). Submarine thermal springs on the Galápagos

Rift. Science, 203, 1073-1083

Davie, M.K. and Buffett, B.A. (2003). A steady state model for

marine hydrate formation: Constraints on methane supply

from pore water sulfate profiles. J. Geophys. Res., 108, 2495,

doi:2410.1029/2002JB002300

Desbruyeres, D. and Toulmond, A. (1998). A new species of hesionid

worm, Hesiocaeca methanicola sp. nov. (Polychaeta: Hesionidae),

living in ice-like methane hydrates in the deep Gulf of Mexico. Cah.

Biol. Mar., 39, 93-98

Dickens, G. (2001). On the fate of past gas: What happens to methane

released from a bacterially mediated gas hydrate capacitor? Geochem.

Geophy. Geosy., 2, art. no.-2000GC000131

Dickens, G. (2011). Down the rabbit hole: toward appropriate discussion

of methane release from gas hydrate systems during the Paleocene-

Eocene thermal maximum and other past hyperthermal events. Past,

7, 831-846

Dickens, G.R. (2003). Rethinking the global carbon cycle with a large,

dynamic and microbially mediated gas hydrate capacitor. Earth Planet

Sc. Lett., 213, 169-183. doi: 10.1016/s0012-821x(03)00325-x

Dickens, G.R., O’Neil, J.R., Rea, D.K. and Owen, R.M. (1995).

Dissociation of oceanic methane hydrates as a cause of the carbon

isotope excursion at the end of the Paleocene. Paleoceanography,

10(6), 965-972

Ding, H. and Valentine, D.L. (2008). Methanotrophic bacteria

occupy benthic microbial mats in shallow marine hydrocarbon

seeps, Coal Oil Point, California. J. Geophys. Res.-Biogeo., 113. doi:

10.1029/2007jg000537