A GLOBAL OUTLOOK ON METHANE GAS HYDRATES
47
REFERENCES
Archer, D. (2007). Methane hydrate stability and anthropogenic climate
change. Biogeosciences Discuss., 4, 993-1057
Barnes, R.O. and Goldberg, E.D. (1976). Methane production and
consumption in anoxic marine sediments. Geology, 4, 297-300
Biastoch, A., Treude, T., Rüpke, L.H., Riebesell, U., Roth, C., Burwicz,
E.B., Park, W., Latif, M., Böhning, C.W., Madec, G. and Wallmann,
K. (2011). Rising Arctic Ocean temperatures cause gas hydrate
destabilization and ocean acidification. Geophys. Res. Lett., 38,
L08602, doi:08610.01029/02011GL047222
Blasing, T.J. (2013). “Recent greenhouse gas concentrations”. Carbon
Dioxide Information Analysis Center, Oak Ridge National Laboratory.
http://cdiac.ornl.gov/pns/current_ghg.htmlBoetius, A. and Suess, E. (2004). Hydrate Ridge: A natural laboratory
for the study of microbial life fueld by methane from near-surface gas
hydrates. Chem. Geol., 205, 291-310
Bohrmann, G., Greinert, J., Suess, E. and Torres, M. (1998).
Authigenic carbonates from the Cascadia subduction zone and
their relation to gas hydrate stability. Geology, 26, 647-650. doi:
10.1130/0091-7613(1998)026<0647:acftcs>2.3.co;2
Booth, J.S., O’Leary, D.W., Popenoe, P. and Danforth, W.W. (1993).
U.S. Atlantic continental slope landslides: their distribution, general
attributes, and implications. In Submarine landslides: Selected studies
in the U.S. Exclusive Economic Zone (eds. W.C. Schwab, H.J. Lee and
D.C. Twichell). pp. 14-22. U.S. Geological Survey Bulletin no. 2002
Borowski, W.S., Paull, C.K. and Ussler, W., III (1999). Global and local
variations of interstitial sulfate gradients in deep-water, continental
margin sediments: Sensitivity to underlying methane and gas
hydrates. Mar. Geol., 159, 131-154
Boswell, R., Collett, T., Frye, M., Shedd, B., McConnell, D. and Shelander,
D. (2012). Subsurface gas hydrates in the northern Gulf of Mexico. J.
Mar. Pet. Geol., 34, 4-30.
Boucher, O., Friedlingstein, P., Collins, B. and Shine, K.P. (2009). The
indirect global warming potential and global temperature change
potential due to methane oxidation. Environ. Res. Lett., 4, 044007
Bouriak, S., Vanneste, M. and Saoutkine, A. (2000). Inferred gas
hydrates and clay diapirs near the Storegga Slide on the southern edge
of the Voring Plateau, offshore Norway. Mar. Geol., 163, 125-148
Bryn, P., Berg, K., Forsberg, C.F., Solheim, A. and Kvalstad, T.J. (2005).
Explaining the Storegga Slide. Mar. Petrol. Geol., 22, 11-19. doi:
10.1016/J.Marpetgeo.2004.12.003
Buffett, B. and Archer, D. (2004). Global inventory of methane clathrate:
Sensitivity to changes in the deep ocean. Earth Planet Sc. Lett., 227,
185-199
Bugge, T., Befring, S., Belderson, R.H., Eidvin, T., Jansen, E., Kenyon,
N.H., Holtedahl, H. and Sejrup, H.P. (1987). A giant 3-stage
submarine slide off Norway. Geo-Mar. Lett., 7, 191-198
Carney, R.S. (1994). Consideration of the oasis analogy for
chemosynthetic communities at Gulf-of-Mexico hydrocarbon vents.
Geo-Mar. Lett., 14, 149-159
Childress, J.J., Fisher, C.R., Brooks, J.M., Kennicutt, M.C., Bidigare, R.
and Anderson, A.E. (1986). A methanotrophic marine molluscan
(Bivalvia, Mytilidae) symbiosis - Mussels fueled by gas. Science, 233,
1306-1308
Colwell, F.S. and Ussler III, W. (2010). Global scale consequences of
biological methane production. In Handbook of hydrocarbon and lipid
microbiology (ed. K.N. Timmis). pp. 3056-3065. Springer-Verlag, Berlin
Cordes, E.E., Cunha, M.R., Galéron, J., Mora, C., Roy, K.O.-L., Sibuet, M.,
Gaever, S.V., Vanreusel, A. and Levin, L.A. (2010). The influence of
geological, geochemical, and biogenic habitat heterogeneity on seep
biodiversity. Mar. Ecol., 31, 51-65
Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., Herzen von, R.P.,
Ballard, R.D., Green, K., Williams, D., Brainbridge, A., Crane, K. and
Andel van, T.H. (1979). Submarine thermal springs on the Galápagos
Rift. Science, 203, 1073-1083
Davie, M.K. and Buffett, B.A. (2003). A steady state model for
marine hydrate formation: Constraints on methane supply
from pore water sulfate profiles. J. Geophys. Res., 108, 2495,
doi:2410.1029/2002JB002300
Desbruyeres, D. and Toulmond, A. (1998). A new species of hesionid
worm, Hesiocaeca methanicola sp. nov. (Polychaeta: Hesionidae),
living in ice-like methane hydrates in the deep Gulf of Mexico. Cah.
Biol. Mar., 39, 93-98
Dickens, G. (2001). On the fate of past gas: What happens to methane
released from a bacterially mediated gas hydrate capacitor? Geochem.
Geophy. Geosy., 2, art. no.-2000GC000131
Dickens, G. (2011). Down the rabbit hole: toward appropriate discussion
of methane release from gas hydrate systems during the Paleocene-
Eocene thermal maximum and other past hyperthermal events. Past,
7, 831-846
Dickens, G.R. (2003). Rethinking the global carbon cycle with a large,
dynamic and microbially mediated gas hydrate capacitor. Earth Planet
Sc. Lett., 213, 169-183. doi: 10.1016/s0012-821x(03)00325-x
Dickens, G.R., O’Neil, J.R., Rea, D.K. and Owen, R.M. (1995).
Dissociation of oceanic methane hydrates as a cause of the carbon
isotope excursion at the end of the Paleocene. Paleoceanography,
10(6), 965-972
Ding, H. and Valentine, D.L. (2008). Methanotrophic bacteria
occupy benthic microbial mats in shallow marine hydrocarbon
seeps, Coal Oil Point, California. J. Geophys. Res.-Biogeo., 113. doi:
10.1029/2007jg000537