Background Image
Table of Contents Table of Contents
Previous Page  48 / 78 Next Page
Information
Show Menu
Previous Page 48 / 78 Next Page
Page Background

FROZEN HEAT

48

Felbeck, H. (1981). Chemoautotrophic potential of the hydrothermal

vent tube worm, Riftia pacjyptila Jones (Vestimentifera). Science, 213,

336-338

Fisher, C.R., MacDonald, I.R., Sassen, R., Young, C.M., Macko, S.A.,

Hourdez, S., Carney, R.S., Joye, S.B. and McMullin, E. (2000).

Methane ice worms: Hesiocaeca methanicola colonizing fossil fuel

reserves. Naturwissenschaften, 87, 184-187

Gee, M.J.R., Uy, H.S., Warren, J., Morley, C.K. and Lambiase, J.J. (2007).

The Brunei slide: A giant submarine landslide on the North West

Borneo Margin revealed by 3D seismic data. Mar. Geol., 246, 9-23.

doi: Doi 10.1016/J.Margeo.2007.07.009

Goedert, J.L. and Benham, S.R. (2003). Biogeochemical processes

at ancient methane seeps: the Bear River site in southwestern

Washington. In Western Cordillera and adjacent areas: Boulder,

Colorado (ed. T.W. Swanson). pp. 201-208. Geological Society of

America

Hansen, J., Fung, A., Lacis, A., Rind, D. and Lebedeff, S. (1988). Global

climate changes as forecast by Goddard Institute for Space Studies

3-D Model. J. Geophys. Res., 93, 9341-9364

Hanson, R.S. and Hanson, T.E. (1996). Methanotrophic bacteria.

Microbiol. Rev., 60, 439-471

Hedges, J.I. and Keil, R.G. (1995). Sedimentary organic-matter

preservation – An assessment and speculative synthesis. Mar. Chem.,

49, 81-115

Hornbach, M.J., Lavier, L.L. and Ruppel, C.D. (2007). Triggering

mechanism and tsunamogenic potential of the Cape Fear Slide

complex, U.S. Atlantic margin. Geochem. Geophy. Geosy., 8, Q12008,

doi: 12010.11029/12007GC001722, 001716 p.

Houghton, R. A. (2007), Balancing the global carbon budget, Annu. Rev.

Earth Planet. Sci., 35, 313-347

Hu, L., Yvon-Lewis, S.A., Kessler, J.D. and MacDonald, I.R. (2012).

Methane fluxes to the atmosphere from deepwater hydrocarbon

seeps in the northern Gulf of Mexico. J. Geophys. Res., 117. doi:

10.1029/2011jc007208

IPCC (2007). Climate Change 2007: The physical science basis.

Contribution of Working Group I to the fourth assessment report

of the Intergovernmental Panel on Climate Change 996 p. IPCC,

Cambridge, United Kingdom and New York, NY, USA

Jiang, G., Shi, X. and Zhang, S. (2006). Methane seeps, methane

hydrate destabilization, and the late Neoproterozoic postglacial cap

carbonates. Chin. Sci. Bull., 51, 1152-1173

Jørgensen, B.B. and Nelson, D.C. (2004). Sulfide oxidation in marine

sediments: Geochemistry meets microbiology. Geol. Soc. Am., Special

Paper 379, 63-81

Joye, S.B., Samarkin, V.A., Orcutt, B.N., MacDonald, I.R., Hinrichs, K.U.,

Elvert, M., Teske, A.P., Lloyd, K.G., Lever, M.A., Montoya, J.P. and

Meile, C.D. (2009). Metabolic variability in seafloor brines revealed

by carbon and sulphur dynamics. Nat. Geosci., 2, 349-354. doi: Doi

10.1038/Ngeo475

Judd, A.G., Hovland, M., Dimitrov, L.I., García Gil, S. and Jukes, V.

(2002). The geological methane budget at continental margins and its

influence on climate change. Geofluids, 2, 109-126

Kastner, M., Torres, M., Solomon, E. and Spivack, A. (2008). Marine pore

fluid profiles of dissolved sulfate; do they reflect in situ methane fluxes.

Fire in the Ice, NETL Methane Hydrate Newsletter, Summer, 6-8

Kayen, R.E. and Lee, H.J. (1991). Pleistocene slope instability of gas

hydrate-laden sediment on the Beaufort Sea Margin. Mar. Geotechnol.,

10, 125-141

Kiel, S. (2009). Global hydrocarbon seep-carbonate precipitation

correlates with deep-water temperatures and eustatic sea-level

fluctuations since the Late Jurassic. Terra Nova, 21, 279-284

Knittel, K. and Boetius, A. (2009). Anaerobic oxidation of methane:

progress with an unknown process. Annu. Rev. Microbiol., 63, 311-334

Kvalstad, T.J., Andresen, L., Forsberg, C.F., Berg, K., Bryn, P. and

Wangen, M. (2005). The Storegga slide: evaluation of triggering

sources and slide mechanics. Mar. Petrol. Geol., 22, 245-256. doi:

10.1016/J.Marpetgeo.2004.10.019

Lacis, A., Hansen, J., Lee, P., Mitchell, T. and Lebederr, S. (1981).

Greenhouse effects of trace gases. Geophys. Res. Lett., 8, 1035-1038

Lee, H.J. (2009). Timing of occurrence of large submarine landslides

on the Atlantic Ocean margin. Mar. Geol., 264, 53-64. doi: 10.1016/J.

Margeo.2008.09.009

Levin, L.A. (2005). Ecology of cold seep sediments: interactions of fauna

with flow, chemistry and microbes. Oceanogr. and Mar. Biol.: Ann.

Rev., 43, 1-46

Levin, L.A., Mendoza, G.F., Gonzalez, J.P., Thurber, A.R. and Cordes,

E.E. (2010). Diversity of bathyal macrofauna on the northeastern

Pacific margin: the influence of methane seeps and oxygen minimum

zones. Mar. Ecol.-Prog. Ser., 31, 94-110

Liu, X. and Flemings, P.B. (2006). Passing gas through the hydrate

stability zone at southern Hydrate Ridge, offshore Oregon. Earth

Planet Sc. Lett., 241, 211-226

Lopez, C., Spence, G., Hyndman, R. and Kelley, D. (2010). Frontal ridge

slope failure at the northern Cascadia margin: Margin-normal fault

and gas hydrate control. Geology, 38, 967-970. doi: Doi 10.1130/

G31136.1

Macdonald, I., Bender, L., Vardaro, M., Bernard, B. and Brooks, J. (2005).

Thermal and visual time-series at a seafloor gas hydrate deposit on the

Gulf of Mexico slope, Earth and Planetary Science Letters, 233(1-2),

45-59

MacDonald, I.R., Leifer, I., Sassen, R., Stine, P., Mitchell, R. and

Guinasso, N., Jr. (2002). Transfer of hydrocarbons from natural seeps

to the water column and atmosphere. Geofluids, 2, 95-107

Maslin, M., Owen, M., Day, S. and Long, D. (2004). Linking continental-

slope failures and climate change: Testing the clathrate gun

hypothesis. Geology, 32, 53-56. doi: 10.1130/G20114.1