Table of Contents Table of Contents
Previous Page  553 / 1228 Next Page
Information
Show Menu
Previous Page 553 / 1228 Next Page
Page Background

The method … is ready

I have GxM equations of the form (1) @ each

voxel (GxMxN

vox

in total)

)1(

)

(

4

, ,

, ,

)( ,

,

)( ,

ˆ

pr r

P

ngpq

ng scat q rng gt

rng

 



 



begin with E1 (highest energy group)

)2(

0

) ,(

1'

)( ' , ,

)(

' ,,

)ˆ,( , ,

1

E E

l

l

l m

m

lY

G

g

r gml

rg gls

rng scat

q

p



 



0 )( ,1

iter rn

make an initial guess for

ˆ

1

)3(

'

)' ( )

,(,

1 1'

'

)(

' ,,

m

N gE

dEdE EfE Erls

g

gE

g

gE

rg gls



 

calculate cross sections from (3) & (5)

calculate the expansion from (4)

)5(

) ( ) ,(

1

)( ,

)4(

) (

) (

1

)( ,

)( , ,

dEEfErt

gE

rgt

dEnwn lYEf

n

rng

gE

rgml

  

use these in (2) to calculate q

scat,1,n

solve (1) for

1 )( ,1

iter rn

gE

if convergence criterion met, proceed with g=2

if convergence criterion not met, re-iterate

BUT…:

1. I need to be efficient

(t~ GxMxN x#iters x order of legendre exp )

& work

vox

.

.

with finite voxels

2. I need to account for inhomogeneities

3 I

d t

k ith

l

. nee o wor w rea sources

4. I need to account for finite patient dimensions