Background Image
Table of Contents Table of Contents
Flipping Book - IMRT Next Page
Information
Show Menu
Flipping Book - IMRT Next Page

 




L01 Opening and Welcome - Tournel
8

L02 Treatment a=of Rectal Cancer Using IMRT/IGRT - Engels
38

Slide Number 1
38

Slide Number 2
39

Local recurrence rate (update)
40

Preoperative chemoRT or RT alone?
41

Adverse effects of long-course chemoRT
42

Efforts to improve outcome
43

3D-Conformal RT: 3-field technique
44

3D-conformal RT vs IMRT
45

+ Image-guided RT (IG-IMRT)
46

UZ Brussel approach
47

Phase II study 2005 – 2010
48

Dose-volume constraints for IMRT: small bowel
49

Dose-volume constraints for IMRT: bladder
50

Dose-volume constraints for IMRT: pelvic bone + plexus
51

Dose-volume constraints for IMRT: bone marrow
52

Proposed dose-volume constraints IMRT rectal cancer
53

IG-IMRT by helical tomotherapy with a simultaneous integrated boost
54

Acute toxicity
55

Surgical characteristics and downstaging
56

Late toxicity
57

Follow-up (median 54 months; range: 27-79 months)
58

2010: Multicentric randomized trial (NCT 01224392)
59

Study design
60

Patient population (n = 169)
61

Acute toxicity
62

Surgical parameters
63

Pathology
64

Primary endpoint
65

Outcome (median follow-up 14 months)
66

Preoperative RT with a simultaneous integrated boost compared to chemoRT for T3-4 rectal cancer: a multicentric randomized trial
67

Acknowledgements
68

L03 Treatment of Lung and Liver Tumours Using Dynamic Tracking - Gavaert
69

L04 Treatment of Oligometastases Using a SBRT/IMRT/IGRT - Van Den Begin
128

Treatment of oligometastasesusing SBRT/IMRT/IGRT
128

1. SBRT and oligometastatic disease
129

Stereotactic Body Radiation Therapy
130

Oligometastatic disease
131

Oligometastases: A distinct disease entity at the clinical level
132

Stereotactic radiotherapy for oligometastases: a prognostic model for survival
133

Overall Survival
134

Patient-inherent risk factors associated with impaired OS
135

Risk factor analysis
136

Patient non-inherent risk factors associated with impaired OS
137

Impact of SBRT on overall survival as compared to standard of care?
138

2. Helical Tomotherapy IMRTfor oligometastatic disease: analysis of recurrences
139

Slide Number 19
140

Helical tomotherapy for oligometastatic CRC:UZ Brussel experience
141

Cause of local failure after SBRT
142

Patterns of local failure
143

Tomotherapy for moving targets?
144

3. Phase II study of SBRT for oligometastatic cancer
145

Phase II study of Vero SBRT for oligometastatic cancer
146

2. Motion management
147

Treatment algorithm
148

A. ITV-approach: 4D-CT
149

A. ITV-approach: contouring
150

Case 1: 54 year old patient with lungmetastasis
151

Daily cone beam CT positioning with ITV approach
152

B. Dynamic Tumor tracking: Vero
153

The Vero positioning system
154

Implantation of fiducial
155

B. Dynamic Tumor tracking
156

Potential benefits of Dynamic Tracking
157

Slide Number 38
158

Case 2: multiple-met tracking
159

Case 2: 2 livermetastases
160

Volumetric imaging + Dynamic Tracking
161

Inter-fractional organ-at-risk motion
162

Slide Number 45
163

Toxicity
164

Local control (median follow-up 12 months)
165

Local control ITV vs Tracking
166

Local control according to location
167

PFS and OS (n=44 patients)
168

Conclusions: SBRT for oligometastases
169

Acknowledgements
170

L05 Radiosurgery - Gavaert
171

L06 Radtional of IMRT; Clinicians View - Lohr
236

IMRT - a physician‘s view(As if physician‘s, physicists and RTs should have different views of the world…..)
236

Slide Number 2
237

Disclosure
238

Drivers of IMRT
239

Technical Basis
240

Radiotherapy Treatment Planning
241

Treatment Delivery
242

Inverse Planning
243

Requirements
244

Prescription
245

Everything works fine up to here
246

Optimization
247

Optimization Strategies
248

IMRT-Capable Delivery System
249

Basic treatment techniques
250

2 “Slices” Treated per Rotation
251

Ok, everything is almost perfect up to this point
252

Clinical Application of IMRT
253

Most important indications and treatment philosophy
254

Slide Number 20
255

IMRT clinical outcome
256

Avoiding unnecessary toxicity
257

Slide Number 23
258

Slide Number 24
259

IMRT is evil….is it? The SEER-Database suggests…
260

Slide Number 26
261

Caveat: Marginal misses and high doses to large volumes
262

Tata Memorial Randomized Trial
263

Slide Number 29
264

Slide Number 30
265

Now comes the strange part…..
266

Target Delineation
267

The good news, however……
268

Hypofractionation/SIB-> Watch the Volume
269

Brain tumor cells are interdispersed with normal cellsThe Brain is the central human organ. Severe damage here alters the personality….and thus effectively kills the patient alive
270

There is good news on the secondary tumor front:
271

Randomized Data: PORTEC etc.
272

Convenience and Optimization of existing Paradigms
273

Head and Neck
274

Slide Number 40
275

Slide Number 41
276

Slide Number 42
277

Clinical Results with Tangential IMRT
278

Scatter Reduction with tangential IMRT
279

NPC
280

IMRT allows SRS with relatively large leaf sizesand facilitates multi-lesion treatments with one isocenter
281

Inhomogenous dose sagittal
282

Transversal inhomogenous
283

Treatment Times
284

A very special patient
285

Quality assurance with Gafchromic EBT3 films
286

IGRT / Online-adaptation
287

Target / Organ Motion
288

Slide Number 54
289

Slide Number 55
290

Possible (partial) remedy: IMRT/VMAT in computer-controlled deep-inspiration breath hold
291

Volumetric imaging - online during a treatment fraction
292

The good thing that comes out of these machines:
293

New methods for detection of subclinical metastasesa) in general ->Liquid Biopsy
294

Polyclonality is always a problem with any (vaccination) strategy:
295

New methods for detection of subclinical metastasesb) providing topical information at high resolution->MRI
296

Slide Number 62
297

Slide Number 63
298

Oligometastases/Multitargets
299

Oligomets – all lesions on one device
300

New treatment possibilities in metastatic patientsMultiple lesions with one setup
301

Immuntherapie
302

Slide Number 68
303

CP-Inhibitor combinations
304

RT Fraction Size
305

…..and keeping in mind this….
306

And finally: Is there anything left for………
307

Slide Number 73
308

Rationale for Particles in Radiosurgery
309

Drivers of IMRT
310

L07 IMRT Delivery Techniques - Schwarz
311

Slide Number 1
311

Slide Number 2
312

Why did we end up with IMRT?
313

How can we modulated particle fluence?
314

Slide Number 5
315

Subfields (or segments)
316

Slide Number 7
317

Slide Number 8
318

“Close-in” technique
319

“Sweep” technique
320

Pro’s and Con’s
321

Sequencing & Optimization:The “reducing levels” technique (Xia, Verhey)
322

Slide Number 13
323

Slide Number 14
324

The “reducing levels” technique (Xia, Verhey)
325

The “reducing levels” technique (Xia, Verhey)
326

The “reducing levels” technique (Xia, Verhey)
327

The “reducing levels” technique (Xia, Verhey)
328

The “reducing levels” technique (Xia, Verhey)
329

The “reducing levels” technique (Xia, Verhey)
330

The “reducing levels” technique (Xia, Verhey)
331

The “reducing levels” technique (Xia, Verhey)
332

The “reducing levels” technique (Xia, Verhey)
333

Delivered MUs
334

IMRT-relevant features of MLCs
335

Geometric design: single focused
336

Geometric design: double focused
337

What is the optimum leaf width ?
338

Tongue & groove effect
339

Slide Number 30
340

Leaf transmission and interleaf leakage
341

Slide Number 32
342

Slide Number 33
343

‘serial tomotherapy’ mimic system
344

Elekta MLCi2
345

Elekta Agility
346

Elekta Beam Modulator
347

Varian MLCs - 1
348

VARIAN MLCs -2
349

Collimation geometry
350

Slide Number 41
351

Slide Number 42
352

Dynamic rotation therapy
353

VMAT in action
354

Differences among techniques
355

Single Arc techniques
356

Quite some discussions on the subject
357

Not all rotational techniques are created equal
358

Static field IMRT vs arc techniques
359

Dedicated IMRT/IGRT devices
360

TomoTherapy HI -ART System
361

HT dose delivery system
362

Cyberknife
363

Slide Number 54
364

Slide Number 55
365

Imaging System
366

General purpose vs dedicated devices
367

Conclusions
368

L08 3_Dosimetry issues 2015_Koen Tournel
369

L09 TPS Commissioning - Schwarz
439

Slide Number 1
439

Overview
440

Four steps to define, baseline and monitor the performances of radiotherapy equipment.
441

1/4
442

2/4
443

3/4
444

4/4
445

Where does ‘patient specific QA’ fits into this scheme?
446

Commissioning of TPS
447

Slide Number 10
448

How to consider all variables in the acceptability criteria ?
449

Slide Number 12
450

Slide Number 13
451

First, what you can NOT commission/QA
452

Slide Number 15
453

IMRT  Highly automated planning procedure
454

Slide Number 17
455

Slide Number 18
456

Accurate dose computation during the optimisation
457

Combining different algorithms in the optimisation
458

1. Modelling/measuring OF for small and/or elongated fields
459

2. MLC modelling
460

3. Beam ‘tails’ modeling
461

4. Sensitivity of beam model w.r.t. detector type
462

Measurements vs. calculations1D dose profiles
463

Measurements vs. calculations2-D dose distributions
464

Gamma function
465

In practice
466

Slide Number 29
467

Gamma Matrix
468

Gamma as an error detection system
469

Apply (and verify) ‘test case’ fluences
470

Slide Number 33
471

Dedicated phantoms
472

Plastic vs realistic patient representations
473

External audits in IMRT commissioning/verification
474

RPC experience - USAcceptance criteria: 7% and 4mmIbbott IJROBP 2008
475

Slide Number 38
476

Slide Number 39
477

L10 IMRT Optimization ; ALgorithms and Cost Functions - Sohn
478

IMRT Optimization:Algorithms and Cost Functions
478

Disclosure
479

FAQ:
480

How close are our objectives to a physically feasible dose?
481

With 4 beams…
482

With 4 beams…
483

What if the gradient has to be tighter?
484

What if the gradient has to be tighter?
485

Solution for this special case:Use more beam angles!
486

So, why optimization?
487

FAQ:
488

The IMRT optimization problem:What is optimized, and what are the variables?
489

FAQ:
490

The popular understanding
491

The popular fear
492

The truth: degeneracy of the optimization problem, non-uniqueness of the solution
493

Fluence profile optimization (No MLC)
494

Next: SequencingAdd (a lot of!) delivery constraints…
495

Principles: The optimization problem for the different IMRT techniques
496

Optimization Algorithms
497

FAQ:
498

What are typical treatment goals?
499

Without the laws of physics, all goalscould be fulfilled simultaneously
500

There exists a boundary that separatesphysical from unphysical solutions
501

In other words: Treatment goals contradict each other! How can these be balanced?
502

Cost Functions can be Balanced by Weight Factors: the Lagrange Function
503

Parametrisation of the Solution Space byWeight Factors
504

Navigating the Solution Space:Libraries of Proposals (‘multicriterial/Pareto-optimization’)
505

Navigating the Solution Space:Constrained Optimization and Sensitivity
506

Navigating the Solution Space:Constrained Optimization and Sensitivity
507

„Automated planning“
508

FAQ:
509

Because:
510

FAQ:
511

MLC delivery deviates from the ideal profiles
512

Precise dose computation DURING fluence profile optimization is immensely expensive!
513

How to tackle these problems…
514

Iterative segment shape (aperture) optimization
515

How to tackle these problems…
516

Direct aperture optimization needs a control ofsegment shapes and good initial segment shapes
517

This is why…
518

Rotational IMRT techniques:Alternatives for the creation of initial guesses
519

FAQ:
520

How much optimization is in an optimizer?
521

FAQ:
522

Again: What are Typical Treatment Goals?
523

A cost function rewards the positive aspects of a DVHand penalizes the negative ones in a single number
524

A cost function rewards the positive aspects of a DVHand penalizes the negative ones in a single number
525

Properties of Cost Functions
526

The most Common Physical Cost Function:One-Sided Quadratic Penalties
527

The Purpose of a Cost Function is to control the Shape of the DVH: Control Weights
528

Local Control of a Quadratic Overdose Penalty
529

Control of a Target DVH by a One-SidedQuadratic Underdosage Penalty
530

Control of a Target DVH by Two One-Sided Quadratic Penalties
531

Can quadratic penalties controlall aspects of dose?
532

DVH Control for Organs with a Large Volume Effect: DVH Constraints
533

Local Control of a DVH constraint:
534

DVH Control for Organs with a Large Volume Effect: Multiple DVH Constraints
535

How does a Parallel Complication Modelcontrol the DVH?
536

Local Control of a Parallel Cost Function
537

How does a Serial Complication Model control the DVH ?
538

Local Control of a Serial Cost Function
539

FAQ:
540

Clinical relevance of the serial cost function
541

Summary & Conclusions
542

Summary & Conclusions [2]
543

L11 Image-Guided & Adaptive; Concept and Approaches - Sohn
544

Adaptive Radiotherapy
544

Disclosure
545

The common planning approach
546

This is what actually happens!
547

Classification of errors&uncertainties according to their stochastic nature
548

‘Adaptive RT’:How it all started
549

Adaptive RT:The fundamental, yet abstract picture…
550

The simplest, non-adaptive planning approach as process
551

Margins: The PTV-concept
552

How large does the margin have to be?
553

Which assumptions are behind this formula?
554

This is where adaptive RT comes in!
555

Adapting the isocentre:Setup correction protocols
556

Estimation of the patient-individual setup error
557

Estimation of the patient-individual setup error
558

Adapting the isocentre:Setup correction protocols
559

Some proposed setup protocols…
560

How to evaluate and find the best strategy?:Treatment course simulation approaches
561

How to evaluate and find the best strategy?:Treatment course simulation approaches
562

Treatment course simulations for use of different setup protocols
563

The ‘Toolbox’ of Adaptive RT
564

One step further: Margin adaption
565

Margin adaptation ‘visually’
566

The Beaumont offline adaptive RT approach
567

The Beaumont offline adaptive RT approach:Eliminate systematic errors of the organ geometry!
568

The Beaumont offline adaptive RT approach
569

What are the clinical benefits?
570

The next step: more than one re-optimization,dose accumulation, probabilistic planning
571

The next step: more than one re-optimization,dose accumulation, probabilistic planning
572

The next step: more than one re-optimization,dose accumulation, probabilistic planning
573

The ‘Toolbox’ of Adaptive RT
574

This was all offline ART…Now: Online Adaptive Re-Planning
575

This was all offline ART…Now: Online Adaptive Re-Planning
576

Zero Margins in daily online ART/IGRT?Intrafraction motion: prostate
577

Zero Margins in daily online ART/IGRT?Intrafraction motion: prostate
578

Zero Margins in daily online ART/IGRT?Intrafraction motion: prostate
579

Further limitations of daily rigid isocentre adaptations:Deformable uncertainties
580

Further limitations of daily rigid isocentre adaptations:Deformable uncertainties
581

Daily rigid isocentre adaptations/IGRT:Conclusions
582

Treatment of targets with large interfractional deformations: Plan-selection strategies
583

Treatment of targets with large interfractional deformations: Plan-selection strategies
584

Anatomical changes of trending nature
585

Anatomical changes of trending nature
586

Anatomical changes of trending nature
587

Biologically Adapted Radiotherapy
588

Further reading…
589

Conclusions
590

Conclusions [2]
591

Finally: Some (more) words of caution
592

L12 Image-Guided & Adaptive; Clinical Applications - Lohr
593

IGRT for IMRT
593

Disclosure
594

Basic treatment techniques
595

Slide Number 4
596

T2w: (A) IMRT vs. (B) 3D
597

Slide Number 6
598

Dose-Escalated Irradiation of Paraspinal Metastases
599

MIMiC
600

The HI•ART TomoTherapy System
601

Dr. T. Rock Mackie with the University of Wisconsin Tomotherapy Research Unit
602

UW Tomotherapy Research Unit
603

This is where we want to go
604

Megavoltage CT Images
605

Verification/QA
606

Slide Number 15
607

Slide Number 16
608

Slide Number 17
609

Slide Number 18
610

Slide Number 19
611

Slide Number 20
612

Slide Number 21
613

Slide Number 22
614

And for a more detailed Discussion of Positioning Errors please turn to:
615

Slide Number 24
616

Slide Number 25
617

Slide Number 26
618

Stereotactic Ultrasound-System
619

Image Guided Radiotherapy (IGRT)
620

Motiavation for kV-Imaging…
621

… and cone-beam scanning
622

Dose for positioning verification I
623

Dose for positioning verification 2
624

Target / Organ Motion
625

Slide Number 34
626

Neck Flexibility
627

Daily vs. less frequent Imaging: Spinal cord dose
628

ART (IMRT) – Dosimetric Benefits
629

Slide Number 38
630

Slide Number 39
631

Precision Immobilizatin for Pelvic Tumors
632

BAT-Procedure
633

Slide Number 42
634

Slide Number 43
635

Slide Number 44
636

Slide Number 45
637

Slide Number 46
638

Slide Number 47
639

HexaPOD®
640

IGRT: CBCT
641

Slide Number 50
642

Slide Number 51
643

Slide Number 52
644

CBCT (XVI) with ABCin partial breath-hold vs. total breath-hold
645

4D-CBCT
646

Slide Number 55
647

Slide Number 56
648

Slide Number 57
649

Slide Number 58
650

Slide Number 59
651

Slide Number 60
652

Slide Number 61
653

Influence of IGRT on clinical outcome
654

Slide Number 63
655

Surface-based Surveillance
656

Catalyst Characteristics
657

Ansatz kV+MV-Rekonstruktion
658

Slide Number 67
659

Beispiel: Tumor shape Star10, after registration of iso-shift 1(automatic registration with in-house developed software - Matlab)
660

Slide Number 69
661

2- MRI and LINAC
662

3- MR LINAC
663

L13 IMRT in Breast and Risk of Secondary Cancer After IMRT - Lohr
664

Breast IMRTSecondary Tumor Risk
664

Disclosure
665

Slide Number 3
666

Clinical Application of IMRT
667

Most important indications and treatment philosophy
668

Slide Number 6
669

IMRT clinical outcome
670

Tumor Localizations
671

There are two different paradigms that have to be discussed separately:
672

1. Improvement of Dose Homogeneit for Tangent Irradiation
673

Slide Number 11
674

Slide Number 12
675

Optimization of Tangent Irradiation
676

Optimization of Tangent Irradiation
677

Breast IMRT - Dose Calculation
678

Breast IMRT - Dose Calculation
679

Slide Number 17
680

Clinical Results with Tangential IMRT
681

Fox Chase experience, Median F/U 31 mo, 946 women46 + 16 Gy
682

Scatter Reduction with tangential IMRT
683

Peripheral dose after 2D, 3D and Tangential IMRT
684

Tangential (!!!) IMRT vs. DIBH
685

Slide Number 23
686

Distribution of Coronary Artery Stenosis After Radiation for Breast Cancer
687

Supine Breast Movement – intra- and interfraction
688

Slide Number 26
689

Slide Number 27
690

Slide Number 28
691

Slide Number 29
692

Slide Number 30
693

Slide Number 31
694

Slide Number 32
695

Slide Number 33
696

Slide Number 34
697

Current status of breast IMRT
698

IMRT vs. VMAT
699

First clinical data
700

Slide Number 38
701

Prone vs. Supine
702

Hypofractionation/SIB-> Watch the Volume
703

SIB Breast – Localization?
704

Slide Number 42
705

Second Malignancies
706

IMRT-Capable Delivery System
707

There is nothing new under the sun……2
708

There is nothing new under the sun……1
709

“The most important prerequisite for the development of a second neoplasm is cure of the primary malignancy”
710

Slide Number 48
711

Risk estimates for secondary cancer after exposure to ionizing radiation
712

Different Aspects of Carcinogenesis - Synopsis
713

Problems identifying true incidence numbers of secondary cancer after exposure to ionizing radiation
714

Low Dose Models
715

Slide Number 53
716

Slide Number 54
717

High(er) Dose Exposure
718

Low Doses are evil…….are they???
719

Hodgkin II (GHSG)
720

Hodgkin III (Yale)
721

Hodgkin III: Pediatric HD
722

Hodgkin III: Pediatric HD
723

Hodgkin III: Pediatric HD
724

Breast I
725

Breast II – Italian Data (Allegro Project)
726

Breast III Breast Cancer Survivors
727

Breast III – DBCG Data (Allegro-Project)
728

Breast III – DBCG Data (Allegro-Project)
729

And most recently……
730

This just in…….
731

This just in…….
732

Slide Number 70
733

Slide Number 71
734

KV Radiation
735

Randomized Data: PORTEC etc.
736

“The most important prerequisite for the development of a second neoplasm is cure of the primary malignancy”
737

Secondary Carcinoma
738

Slide Number 76
739

Secondary Tumors: H&N
740

Specific Problems with IMRT
741

Secondary Tumors
742

Reasons for a potentially increased incidence of secondary tumors by IMRT
743

Slide Number 81
744

Prostate IMRT
745

Slide Number 83
746

Pediatric Oncology is a problem…but not a disastrous oneThe St. Jude Data….Conventional RT Techniques
747

Slide Number 85
748

Slide Number 86
749

Assessment of radiation-induced second cancer risks in proton therapy and IMRT for organs inside the primary radiation field
750

Does this sufficiently reflect reality?
751

Slide Number 89
752

Problems with Modelling
753

Slide Number 91
754

Conclusions
755

Where the real danger lurks……
756

L14 IMRT in Hodgkin's Lymphoma and Secondary Cancer Risks - Filippi
757

Highly conformal techniques in Hodgkin’s Lymphoma: indications, techniques, results
757

Slide Number 2
758

Early Stage HL
759

Slide Number 4
760

Slide Number 5
761

Slide Number 6
762

Slide Number 7
763

Slide Number 8
764

Slide Number 9
765

Slide Number 10
766

What do we learn from NCIC/ECOG HD6?
767

Chemotherapy alone for early stage HL
768

Slide Number 13
769

INRT Guidelines
770

Slide Number 15
771

Slide Number 16
772

Slide Number 17
773

Slide Number 18
774

Slide Number 19
775

Slide Number 20
776

Slide Number 21
777

Do we have clinical data on safety and efficacy of INRT/ISRT?
778

Slide Number 23
779

Slide Number 24
780

Slide Number 25
781

Slide Number 26
782

Early Stage HL
783

Slide Number 28
784

Slide Number 29
785

Slide Number 30
786

Slide Number 31
787

Slide Number 32
788

Slide Number 33
789

Slide Number 34
790

Slide Number 35
791

BREACH STUDY
792

Slide Number 37
793

Highly-Conformal Techniques for early stage HL?
794

Slide Number 39
795

Slide Number 40
796

Slide Number 41
797

Slide Number 42
798

Risk of second malignancies with modern RT in HL
799

Slide Number 44
800

Slide Number 45
801

Estimating second cancer risks after contemporary RT
802

Slide Number 47
803

Key is the shape of the dose-response relationshipfor radiation-induced carcinogenesis...
804

Competition between oncogenic transformation & cell killing
805

However, recent epidemiology suggests that the risks are not small at large doses
806

However, recent epidemiology suggests that the risks are not small at large doses
807

Slide Number 52
808

Slide Number 53
809

810

Slide Number 55
811

Slide Number 56
812

Do results change when using different radiobiological models?What are the consequences for IMRT?May IMRT be optimized taking into account secondary cancers risk?
813

Slide Number 58
814

OED for dose inhomogeneity
815

The “full” model: low-dose, cell killing and repopulation
816

Slide Number 61
817

Slide Number 62
818

Slide Number 63
819

Slide Number 64
820

Slide Number 65
821

Slide Number 66
822

Slide Number 67
823

Slide Number 68
824

Slide Number 69
825

Slide Number 70
826

Slide Number 71
827

Final Remarks
828

L15 Patient Specific QA - Schwarz
829

Slide Number 1
829

IMRT QA - The optimistic point of view
830

IMRT QA - The pessimistic point of view
831

Ensuring quality is this
832

… AND this too
833

A few criteria to evalutate a patient-specific QA procedure
834

The big picture
835

What about good old checklists?
836

Slide Number 9
837

Slide Number 10
838

Slide Number 11
839

Commissioning of ‘class solutions’ + limited QA
840

2. 2-D dosimetry + gamma analysis
841

Gamma as an error detection system
842

Gamma function: pros
843

Gamma function: cons
844

Slide Number 17
845

Generalized gradient analysis -2
846

Gamma parameters
847

Sensitivity of gamma analysis on a 2D dataset
848

Lack of correlation with clinical indices
849

Slide Number 22
850

Slide Number 23
851

Slide Number 24
852

Slide Number 25
853

3. Monte Carlo dose calculation
854

Slide Number 27
855

4. In-vivo dosimetry
856

Slide Number 29
857

3D verification of a prostate VMAT treatment
858

Dose-based corrections protocols?
859

From gamma metric to estimated clinical impact
860

‘Perturbation’ methods
861

Conclusions
862

Slide Number 35
863

L16 Modeling Adverse Effects After 3DCRT and IMRT - Gagliardi
864

Modelling adverse effects after radiation therapy
864

Slide Number 2
865

Slide Number 3
866

Slide Number 4
867

Slide Number 5
868

Slide Number 6
869

Slide Number 7
870

Tissue architecture (1)
871

Tissue architecture (2)
872

Slide Number 10
873

”Phenomenological - Quasi mechanistic ” NTCP models (DVH based)
874

Lyman model (1985, Rad Res 104, 13-19)
875

Slide Number 13
876

Slide Number 14
877

Slide Number 15
878

Slide Number 16
879

Relative seriality model (Källman et al 1992)
880

Slide Number 18
881

Mechanistic modelling
882

3D organ model
883

Input data: Dose-volume data
884

Dose-calculation algorithms
885

Slide Number 23
886

Slide Number 24
887

Slide Number 25
888

Clinical data (2)
889

Slide Number 27
890

OPTIMIZATION PROCEDURE
891

Why are parameters uncertain?
892

Model accuracy
893

Peeters et al, IJROBP, 2006
894

Accounting for confounding factors
895

Summarising
896

Slide Number 34
897

L17 Review of Dose-Volume Relationships; H&N - Gagliardi
898

H&N irradiation:dose-volume predictors and NTCP parameters for some complication
898

Slide Number 2
899

Slide Number 3
900

Slide Number 4
901

Xerostomia - PAROTID GLANDS
902

Slide Number 6
903

PAROTID GLANDS – dose-volume recommendations for xerostomia < 20%
904

PAROTID GLANDS
905

Slide Number 9
906

Parotids: other updates…
907

PAROTID GLANDS –
908

Slide Number 12
909

Slide Number 13
910

Slide Number 14
911

Entity and speed of the recovery vs Dmean: a model
912

Outcome data (reduction in salivary flow) and sampling time- @ 1month: almost independent of mean dose - shift to right: higher mean dose with longer follow-up Deasy et al. IJROBP, vol 76, n3, 2010, S58-S63
913

Slide Number 17
914

What is the best measure of xerostomia?
915

Less xerostomy (RTOG scale) with tomotherapy than with sliding window IMRT
916

Validation of QUANTEC guidelines for xerostomia
917

LARYNX AND PHARYNX irradiation
918

Slide Number 22
919

Slide Number 23
920

Slide Number 24
921

DYSPHAGIA
922

Validation of QUANTEC guidelines for disphagia
923

Xerostomia and disphagia after IMRT
924

Slide Number 28
925

SWALLOWING: PC and SL
926

SWALLOWING: dose to superior and middle constrictor muscles
927

SWALLOWING: predictors
928

SWALLOWING: oral mucosa irradiation/ risk of PEG (Sanguineti et al, 2011)
929

Confirming Oral Mucosa DVH related to late swallowing problems
930

Slide Number 34
931

Slide Number 35
932

Volume changes during RT imaged by IGRT to assess normal tissue effects
933

Slide Number 37
934

cranial, caudal and medial regions of the OAR showed larger interobserver variabilities
935

Changes in anatomy over the course of treatment
936

Changes in anatomy over the course of treatment
937

Changes in anatomy over the course of treatment
938

Automated VMAT planning
939

Slide Number 43
940

Slide Number 44
941

L18 IMRT in Head and Neck - Lohr
942

Head and Neck IMRTTolerance Doses (Parotid Gland, Spinal Cord, Optic Pathways)
942

Disclosure
943

Clinical Application of IMRT
944

Most important indications and treatment philosophy
945

Slide Number 5
946

IMRT clinical outcome
947

Canadian H&N IMRT-Review and Consensus
948

Cost Effectiveness of IMRT
949

Tumor Localizations
950

Recent Review
951

10J post full neck IMRT
952

Head and Neck
953

Slide Number 13
954

Slide Number 14
955

Slide Number 15
956

Slide Number 16
957

Slide Number 17
958

Slide Number 18
959

Slide Number 19
960

Slide Number 20
961

Slide Number 21
962

Slide Number 22
963

Slide Number 23
964

Slide Number 24
965

Slide Number 25
966

Slide Number 26
967

Slide Number 27
968

Slide Number 28
969

Slide Number 29
970

Slide Number 30
971

Parotid Tolerance -> The (almost) definitive data….
972

Slide Number 32
973

Slide Number 33
974

It usually is, but you gotta watch out!
975

It usually is, but you gotta watch out!
976

UMM example – cancer of the lower lip
977

Relapse Pattern OCC - PMH
978

Slide Number 38
979

Slide Number 39
980

Slide Number 40
981

Slide Number 41
982

Slide Number 42
983

Slide Number 43
984

Parsport – Parotid Dose Response Relationship
985

GORTEC 2004-3
986

Tata Memorial Randomized Trial
987

Tata Memorial Randomized Trial
988

And if you want everything in one publication… ….go for the Metaanalysis
989

So IMRT is evil….is it? The SEER-Database suggests…
990

Slide Number 50
991

Slide Number 51
992

Slide Number 52
993

Slide Number 53
994

Slide Number 54
995

Slide Number 55
996

Slide Number 56
997

Slide Number 57
998

Slide Number 58
999

Slide Number 59
1000

Slide Number 60
1001

Optic Nerve Toxicity: Quantec
1002

No Optic Neuropathy at <45/1,8 Gy in Nonfunctioning Pituitary Adenoma - High SD are problematic
1003

No ON at Proton Doses of <55GyE
1004

Single Dose vs. Fractionated Tolerance for Meningeoma
1005

Optic Neuropathy Risk after RS
1006

Optic Neuropathy Risk - Synopsis
1007

Plexopathy
1008

Slide Number 68
1009

Start with the close call….Lhermitte‘s (RT+Cht w/ Carbo/Tax)
1010

Spinal Cord Damage – Review 1
1011

Spinal Cord Damage – Review 2
1012

How much RT can I give after conventional RT?
1013

Maximum Doses to Spinal cord of 20 Gy in 1-3 SDLower than expected Tox – high parallelity of Spinal Cord
1014

Partial Volume Spinal Cord Reirradiation
1015

How much SBRT can I give after conventional RT?
1016

Daily vs. less frequent Imaging: Spinal cord dose
1017

ART (IMRT) – Dosimetric Benefits
1018

IMRT vs. Protons?
1019

Slide Number 79
1020

Slide Number 80
1021

Current ASTRO Practice Guideline
1022

L19 Pratical IMRT Planning and Biological Optimization - Schwarz
1023

Slide Number 1
1023

Slide Number 2
1024

Slide Number 3
1025

Slide Number 4
1026

… more complex problems
1027

Slide Number 6
1028

Defining the treatment goals - Cost function
1029

One should define a cost function …
1030

Slide Number 9
1031

Slide Number 10
1032

Defining the treatment goals - VOI definition
1033

PTV:advantages
1034

PTV: disadvantages
1035

To compensate for the unbalance between target coverage and OAR sparing, we often cheat
1036

VOI definitions & c.f. – build up region
1037

SIB & dose gradients in the PTV
1038

Slide Number 17
1039

“IMRT = dose heterogeneity in the PTV.Live with that.”
1040

IMRT to increase PTV dose homogeneity
1041

IMRT to increase PTV dose homogeneity
1042

Dose heterogeneity is a feature, not a bug
1043

IMRT & dose heterogeneity in the PTV
1044

“IMRT = dose heterogeneity in the PTV.Live with that.”Quite the contrary.IMRT allows excellent dose homogeneity as long as you are willing to pay the price for it, so ask for homogeneity only if you actually need it.
1045

“We are not yet ready for EUD/’biological’ optimisation in the clinical practice”
1046

For some OARs the estimates for the volume effect parameter is consistent
1047

Mean lung dose model
1048

Slide Number 27
1049

Slide Number 28
1050

Slide Number 29
1051

Slide Number 30
1052

Commercial implementations - 1 (Philips/Raysearch/(Varian?))
1053

Commercial implementations - 2 (Elekta-Monaco)
1054

Slide Number 33
1055

Start from your existing clinical practice.
1056

Calculate EUD values for your plans
1057

Do the n values suggested in the literature make sense ?
1058

Run a sensitivity analysis
1059

Slide Number 38
1060

Slide Number 39
1061

Slide Number 40
1062

Slide Number 41
1063

Slide Number 42
1064

Slide Number 43
1065

Slide Number 44
1066

General references
1067

Plan reporting
1068

Current and future developments
1069

IMRT planning & geometrical uncertainties
1070

Slide Number 49
1071

Conclusions
1072

L20 Impact of Geometrical Uncertainties on IMRT Dose Distributions - Tournel
1073

L21 Review of Dose-Volume Relationships; Pelvis - Gagliardi
1166

Pelvis irradiation:overview of dose-volume predictors and NTCP parameters
1166

Slide Number 2
1167

Slide Number 3
1168

Rectal bleeding
1169

Michalski et al, IJROBP vol 76, n3, S123-S129, 2010
1170

Slide Number 6
1171

Slide Number 7
1172

Slide Number 8
1173

Peeters et al, IJROBP, 2006
1174

Slide Number 10
1175

Slide Number 11
1176

TO BLEED OR NOT TO BLEED – Valdagni et al, Int.J Rad Onc Biol Phys, feb 2009
1177

Rectum, summary
1178

Rectal bleeding: dose-volume, dose-surface or dose wall?
1179

FOECAL INCONTINENCE
1180

Slide Number 16
1181

Foecal incontinence
1182

Foecal incontinence
1183

Summary RECTUM: dose-volume response relationships
1184

BLADDER
1185

Slide Number 21
1186

Slide Number 22
1187

GU toxicity- what do we know?
1188

Moore et al, IJROBP, 2015
1189

Slide Number 25
1190

…more results from large studies!
1191

Slide Number 27
1192

Slide Number 28
1193

Slide Number 29
1194

Slide Number 30
1195

Slide Number 31
1196

Slide Number 32
1197

PENILE BULB: erectile dysfunction
1198

Slide Number 34
1199

Erectile dysfunction – dose response relationship?
1200

Slide Number 36
1201

Slide Number 37
1202

Slide Number 38
1203

L22 IMRT of Prostate Cancer - Lohr
1204

Tumor Localizations
1204

1205

1206

1207

Do we have to treat CAP?
1208

Slide Number 6
1209

Slide Number 7
1210

Do we need high doses?
1211

Slide Number 9
1212

Slide Number 10
1213

Long Term Results Dutch Dose Escalation Trial
1214

1st comprehensive Metaanalysis on Dose Escalation
1215

Slide Number 13
1216

Slide Number 14
1217

MRC RT01 Long Term Results
1218

Slide Number 16
1219

Slide Number 17
1220

Actuarial disease-free survival
1221

Actuarial incidence of late toxicity
1222

The Benchmark Publication
1223

LATE TOXICITY AFTER INTENSITY-MODULATED RADIATION THERAPY FOR LOCALIZED PROSTATE CANCER: AN EXPLORATION OF DOSE–VOLUME HISTOGRAM PARAMETERS
1224

How?
1225

3D-Confomal vs. IMRT
1226

Slide Number 24
1227

Intensity Modulated Radiotherapy (IMRT)
1228

Slide Number 26
1229

3D-Confomal vs. IMRT + Boost
1230

Prostate Motion
1231

Slide Number 29
1232

Slide Number 30
1233

Slide Number 31
1234

Prostate Motion and time
1235

Spacer/Balloon
1236

Rectal Balloon
1237

Hydrogel - System
1238

Prostata- / Gel-Volume
1239

Slide Number 37
1240

The DIL concept
1241

Slide Number 39
1242

Slide Number 40
1243

Slide Number 41
1244

Tumor Distribution
1245

Lymph node RT (adjuvant? Manifest?)
1246

Slide Number 44
1247

Slide Number 45
1248

PET
1249

Slide Number 47
1250

Slide Number 48
1251

LN Boost with Protons
1252

Initial Plan to Pelvic LN and Prostated Bed, 0-44 Gy
1253

Boost to Prostate Bed and LN, 44-60 Gy (to be followed by further Boost to Prostate Bed (and LN in the Prostate Bed to 71/75 Gy)
1254

Slide Number 52
1255

Hypofractionation
1256

(Partial) Paradigm Shift (back) to High Single Doses
1257

Slide Number 55
1258

Slide Number 56
1259

The experience with moderate Hypofractionation
1260

The most recent data
1261

(Moderate) Hypofractionation – The CHHIP Trial
1262

Protons
1263

Slide Number 61
1264

Salvage
1265

Slide Number 63
1266

The Timing of Salvage Radiotherapy After RadicalProstatectomy: A Systematic Review
1267

Dose Escalation for PSA-Relapse
1268

Dose escalation for salvage RT - Mannheim
1269

Synopsis
1270

L23 Dose Claculations in Static and Rotational IMRT - Sohn
1271

Dose Calculation in Static and Rotational IMRT
1271

Disclosures
1272

Differences in Dose calculation algorithms– A clinically relevant issue?
1273

Differences in Dose calculation algorithms– A clinically relevant issue?
1274

Precise dose calculation is still a challenge:Be aware of potential software BUGS!
1275

Slide Number 6
1276

Slide Number 7
1277

Technical background:Typical components of an accelerator head
1278

Is it really important to focus mainly on radiation transport in the patient?
1279

Monte Carlo simulations of the accelerator head
1280

Crossprofiles and depth dose curvesby components
1281

Variation of the output factor for primary and secondary photons
1282

Output factors by Components
1283

Electron contamination
1284

Energy spectra of primary photons:Angular dependence
1285

Important Conclusion so far
1286

Usual model of the radiation source
1287

Field-size depenence ofOutput-factor ‘explained’ …
1288

Technical background:Typical components of an accelerator head
1289

Example:Leaf and jaw transmission, inter-leaf leakage
1290

Effects of the beam modulating elements that need to be modeled for high-precision dose calculation
1291

Where are we now?
1292

What happens in the patient…
1293

Modelling particle transport in the patient:Dose calculation methods
1294

Kernel-based methods: Separation of Photon-fluence and energy deposition
1295

Kernel-based methods:The TERMA concept
1296

Kernel-based methods:Energy deposition point kernel
1297

Kernel-based methods:Convolution/Superposition
1298

Kernel-based methods:Convolution/Superposition
1299

Kernel-based methods: Dose calculation in inhomogeneous media
1300

Kernel-based methods: Rectilinear density rescaling of the kernel
1301

Kernel-based methods: Rectilinear density rescaling of the kernel
1302

Kernel-based methods: ‘Collapsed Cone’ approximation for efficient density rescaling
1303

Kernel-based methods: ‘Collapsed Cone’ approximation for efficient density rescaling
1304

Kernel-based methods: ‘Collapsed Cone’ approximation for efficient density rescaling
1305

Kernel-based methods: 2D-superposition methods: Pencil Kernel algorithms
1306

Kernel-based methods: 2D-superposition methods: Pencil Kernel algorithms
1307

Modelling particle transport in the patient:Dose calculation methods
1308

Monte Carlo Dose Calculation
1309

Monte Carlo Dose Calculation
1310

Monte Carlo Dose Calculation
1311

Monte Carlo Dose Calculation
1312

Special issues for Rotational IMRT
1313

Special issues for Rotational IMRT:Discretized Arc vs. Continuous Arc Dose Calculation
1314

Linear Boltzmann Transport Equation (LBTE) Solvers
1315

further reading…
1316

Summary and Conclusions
1317

Slide Number 48
1318

Dose calculation issues ‚in practice‘
1319

Base-data for dose-calculations algorithms
1320

Base-data for dose-calculations algorithms
1321

Dose calculation issues ‚in practice‘:Prostate RT: Rectal gas filling in planning CT
1322

Dose calculation issues ‚in practice‘: Dose calculation for lung lesions
1323

Dose calculation issues ‚in practice‘: Dose calculation for lung lesions
1324

Dose calculation issues ‚in practice‘: Dose calculation for lung lesions
1325

Dose calculation issues ‚in practice‘: Dose calculation for lung lesions
1326

Dose calculation issues ‚in practice‘:Dosimetric effects of the treatment table/setup devices
1327

Dose calculation issues ‚in practice‘:Dose calculation in presence of CT artifacts
1328

Dose calculation issues ‚in practice‘:Hounsfield (CT-) value calibration
1329

L24 Potential and Limitations of Rotational IMRT - Tournel
1330

L25 Highly Conformal Techniques in Early Stage Lung Cancer - Filippi
1418

Highly conformal techniques in early stage lung cancer: indications, techniques, normal tissue constraints, results
1418

Slide Number 2
1419

Features of Lung SABR
1420

Slide Number 4
1421

Slide Number 5
1422

SABR for Stage I NSCLC: phase II studies
1423

Slide Number 7
1424

Slide Number 8
1425

Slide Number 9
1426

Slide Number 10
1427

Slide Number 11
1428

SABR is well tolerated: toxicity is uncommon
1429

SBRT and severe COPD?
1430

Slide Number 14
1431

Slide Number 15
1432

Acute radiological changes after SBRT
1433

Slide Number 17
1434

Slide Number 18
1435

Slide Number 19
1436

Slide Number 20
1437

Slide Number 21
1438

Slide Number 22
1439

Slide Number 23
1440

Slide Number 24
1441

Slide Number 25
1442

Slide Number 26
1443

Slide Number 27
1444

Trials of surgery versus SABR
1445

Slide Number 29
1446

Slide Number 30
1447

Slide Number 31
1448

Slide Number 32
1449

Slide Number 33
1450

Slide Number 34
1451

Slide Number 35
1452

Slide Number 36
1453

Technical Advances may have an impact on efficacy and toxicity
1454

Slide Number 38
1455

Slide Number 39
1456

Slide Number 40
1457

Slide Number 41
1458

Slide Number 42
1459

Prognostic factors?
1460

Slide Number 44
1461

Slide Number 45
1462

Slide Number 46
1463

Slide Number 47
1464

Slide Number 48
1465

Slide Number 49
1466

Slide Number 50
1467

Toxicity and Quality of Life
1468

Slide Number 52
1469

Slide Number 53
1470

Pulmonary Function and Quality of Life after VMAT-based SABR
1471

Slide Number 55
1472

Survivorship following SABR
1473

Slide Number 57
1474

Slide Number 58
1475

Slide Number 59
1476

Slide Number 60
1477

Slide Number 61
1478

Final Remarks
1479

L26 Highly Conformal Techniques in Advanced Stage Lung Cancer - Filippi
1480

Highly conformal techniques in locally advanced lung cancer: indications, techniques, normal tissue constraints, results
1480

The “too much” heterogeneous Stage III
1481

Slide Number 3
1482

Slide Number 4
1483

Slide Number 5
1484

Slide Number 6
1485

Slide Number 7
1486

Slide Number 8
1487

Slide Number 9
1488

Slide Number 10
1489

Slide Number 11
1490

RTOG 0617 Primary Objective
1491

Slide Number 13
1492

RTOG 0617: Local Tumor Failure
1493

RTOG 0617: Distant Failure
1494

RTOG 0617: Dosimetric Data Distribution
1495

Slide Number 17
1496

Slide Number 18
1497

Slide Number 19
1498

Slide Number 20
1499

Slide Number 21
1500

Slide Number 22
1501

Slide Number 23
1502

Slide Number 24
1503

Slide Number 25
1504

Slide Number 26
1505

Slide Number 27
1506

Slide Number 28
1507

What is the preferred dose-fractionation schedule?
1508

Slide Number 30
1509

Slide Number 31
1510

Slide Number 32
1511

Changes in radiotherapy fields
1512

Slide Number 34
1513

Slide Number 35
1514

Slide Number 36
1515

Slide Number 37
1516

Slide Number 38
1517

Slide Number 39
1518

Slide Number 40
1519

Slide Number 41
1520

Slide Number 42
1521

Slide Number 43
1522

Slide Number 44
1523

Slide Number 45
1524

Comparative studies on clinical outcomes following either 3D-CRT or IMRT
1525

Slide Number 47
1526

Slide Number 48
1527

Slide Number 49
1528

Slide Number 50
1529

Slide Number 51
1530

Slide Number 52
1531

Slide Number 53
1532

Slide Number 54
1533

Slide Number 55
1534

Slide Number 56
1535

Slide Number 57
1536

Slide Number 58
1537

Slide Number 59
1538

Slide Number 60
1539

Slide Number 61
1540

Slide Number 62
1541

Slide Number 63
1542

Slide Number 64
1543

Conclusions
1544